Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\widehat{xOA}+\widehat{AOB}+\widehat{yOB}=90^0\)
\(\Leftrightarrow\widehat{AOB}=90^0-30^0-30^0=30^0\)
Ta có: tia OA nằm giữa hai tia Ox và OB
mà \(\widehat{xOA}=\widehat{BOA}\left(=30^0\right)\)
nên OA là tia phân giác của \(\widehat{xOB}\)
Giải:
a) Vì Ox và Oy vuông góc với nhau
\(\Rightarrow x\widehat{O}y=90^o\)
\(\Rightarrow x\widehat{O}a+a\widehat{O}b+b\widehat{O}y=x\widehat{O}y\)
\(30^o+a\widehat{O}b+30^o=90^o\)
\(a\widehat{O}b=90^o-30^o-30^o\)
\(a\widehat{O}b=30^o\)
\(\Rightarrow x\widehat{O}a+a\widehat{O}b=x\widehat{O}b\)
\(30^o+30^o=x\widehat{O}b\)
\(\Rightarrow x\widehat{O}b=60^o\)
Vì +) \(x\widehat{O}a+a\widehat{O}b=x\widehat{O}b\)
+) \(x\widehat{O}a=a\widehat{O}b=30^o\)
⇒Oa là tia p/g của \(x\widehat{O}b\)