Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔADB và ΔAEC có
AD=AE
\(\widehat{BAD}\) chung
AB=AC
Do đó: ΔADB=ΔAEC
Suy ra: DB=EC
b: Xét ΔDEB và ΔEDC có
DE chung
\(\widehat{DEB}=\widehat{EDC}\)
EB=DC
Do đó: ΔDEB=ΔEDC
c: Xét ΔOED có \(\widehat{OED}=\widehat{ODE}\)
nên ΔOED cân tại O
=>OE=OD
mà AD=AE
nên AO là đường trung trực của DE
hay AO\(\perp\)DE
a) xét tam giác ADB và tam giác ACE có :
AE=AD(giả thiết)
AB=AC(gt)
O1=02
suy ra tam giác ADB = tam giác ACE
suy ra DB=AC
Bạn kham khảo link này nhé.
Câu hỏi của Cô nàng cá tính - Toán lớp 7 | Học trực tuyến
a: Xét ΔBAD và ΔBED có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔBAD=ΔBED
Suy ra: AD=ED
b: Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)
Do đó: ΔADF=ΔEDC
c: Ta có: ΔADF=ΔEDC
nên DF=DC và AF=EC
Ta có: BA+AF=BF
BE+EC=BC
mà BA=BE
và AF=EC
nên BC=BF
hay B nằm trên đường trung trực của CF(1)
Ta có: DF=DC
nên D nằm trên đường trung trực của CF(2)
Từ (1) và (2) suy ra BD\(\perp\)CF