Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) Trên cùng một nửa mặt phẳng bờ chứa tia Ox, ta có: \(\widehat{xOm}< \widehat{xOy}\left(30^0< 60^0\right)\)
nên tia Om nằm giữa hai tia Ox và Oy
\(\Leftrightarrow\widehat{xOm}+\widehat{yOm}=\widehat{xOy}\)
\(\Leftrightarrow\widehat{yOm}=\widehat{xOy}-\widehat{xOm}=60^0-30^0=30^0\)
Ta có: tia Om nằm giữa hai tia Ox và Oy(cmt)
mà \(\widehat{xOm}=\widehat{yOm}\left(=30^0\right)\)
nên Om là tia phân giác của \(\widehat{xOy}\)(đpcm)
Giải:
a) Tia Ot nằm giữa hai tia Ox và Oy (1) vì các tia Ot,Oy cùng thuộc nửa
mặt phẳng bờ chứa Ox và <
b) Tia Ot nằm giữa hai tia Ox,Oy nên:
+=
do đó
250+ = 500
suy ra = 500- 250 =250 vậy = (2)
c) từ (1) và (2) suy ra Ot là tia phân giác của góc xOy.
a) Vì trên cùng một nửa mặt phẳng bờ chứa tia Ox có \(\widehat{xOt}< \widehat{xOy}\left(25^0< 50^o\right)\)
Nên tia Ot nằm giữa 2 tia Oy và Ot (1)
\(\Rightarrow\) \(\widehat{xOt}+\widehat{yOt}=\widehat{xOy}\)
Thay \(\widehat{xOt}=25^{o^{ }};\widehat{xOy}=50^{o^{ }}\)
b) Ta có:
\(25^{o^{ }}+\widehat{yOt}=50^{o^{ }}\)
\(\Rightarrow\)\(\widehat{yOt}=\)\(50^o-25^o=25^{o^{ }}\)
Có \(\left\{{}\begin{matrix}\widehat{tOy}=25^{o^{ }}\\\widehat{xOt}=25^o\end{matrix}\right.\Rightarrow\widehat{tOy}=\widehat{xOt}\)(2)
c) Từ (1) và (2)
\(\Rightarrow\) Tia Ot là tia phân giác của \(\widehat{xOy}\)
Vì OA là tia phân giác của góc \(\widehat{xOy}\)nên :
\(\widehat{xOA}=\widehat{AOy}=\frac{\widehat{xOy}}{2}=\frac{150^o}{2}=75^o\)
Vì góc xOA > xOz ( 75o> 30o) nên z nằm giữa OA và Ox
Ta có : \(\widehat{xOz}+\widehat{zOA}=\widehat{xOA}\)
\(30^o+\widehat{zOA}=75^o\Leftrightarrow\widehat{zOA}=45^o\)
Vì OB là tia phân giác của góc zOx
Nên : \(\widehat{zOB}=\widehat{BOx}=\frac{\widehat{zOx}}{2}=\frac{30^o}{2}=15^o\)
\(\widehat{AOB}=\widehat{AOz}+\widehat{zOB}\)
\(\widehat{AOB}=45^o+15^o\Leftrightarrow\widehat{AOB}=60^o\)
Vì tia OA là tia phân giác của \(\widehat{xOy}\)(bài cho)
\(\Rightarrow\widehat{yOA}=\widehat{AOx}=\frac{\widehat{xOy}}{2}=\frac{150^o}{2}=75^o\)
Vì tia OB là tia phân giác của \(\widehat{xOz}\)(bài cho)
\(\Rightarrow\widehat{xOB}=\widehat{BOz}=\frac{\widehat{xOz}}{2}=\frac{30^{ }^o}{2}=15^o\)
Trên cùng một nửa mặt phẳng bờ chứa tia Ox có \(\widehat{xOB}=15^o,\widehat{AOx}=75^o\Rightarrow\widehat{xOB}< \widehat{AOx}\)
\(\Rightarrow\)Tia OB nằm giữa 2 tia Ox và OA
\(\Rightarrow\widehat{xOB}+\widehat{AOB}=\widehat{AOx}\)
Thay số:
\(\Rightarrow15^o+\widehat{AOB}=75^o\)
\(\Rightarrow\widehat{AOB}=75^o-15^o\)
\(\Rightarrow\widehat{AOB}=60^o\)
Vậy \(\widehat{AOB}=60^o\)