K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2020

\(C=sin^4a\left(3-2sin^2a\right)+cos^4a\left(3-2cos^2a\right)\)

\(=sin^4a\left(1+2cos^2a\right)+cos^4a\left(1+2sin^2a\right)\)

\(=sin^4a+cos^4a+2sin^2a.cos^2a\left(sin^2a+cos^2a\right)\)

\(=sin^4a+cos^4a+2sin^2a.cos^2a=\left(sin^2a+cos^2a\right)^2=1\)

Đề của bạn bị sai đề đúng phải là sian 4a+sin 2a

Ta sẽ sử dụng công thức biến đổi tổng thành tích :(2sin2a sin3a) / (2sin3a cos2a) như vậy khi giải tiếp ra ta sẽ được 2sina

6 tháng 5 2017

xin lỗi pé chỉ mới lớp 6 thui ~~~

5 tháng 6 2020

\(sin^2a+cos^2a-sin^4a-2cos^2a+sin^2a\)

\(=2sin^2a-cos^2a-sin^4a\)

\(=2sin^2a-cos^2a-\left(\frac{1-cos2a}{2}\right)^2\)

khai triển ra rồi quy đồng lên

\(=\frac{8sin^2a-4cos^2a-1+2cos2a-cos^22a}{4}\)

Mà \(2cos2a=2\left(cos^2a-1\right)=4cos^2-2\)

\(\Rightarrow\frac{8sin^2a-cos^22a-3}{4}\)

Mà \(-cos^22a=sin^22a-1=4sin^2cos^2-1\)

\(\Rightarrow\frac{8sin^2a+4sin^2a.cos^2a-4}{4}\)

\(=\frac{4sin^2a.\left(2-cos^2a\right)-4}{4}\)

\(=sin^2a\left(1+sin^2a\right)-1\)

\(=sin^4a-cos^2a\)

5 tháng 6 2020

viết lại đề đi cậu ơi

9 tháng 9 2017

tôi có lớp 6 thôi ạ cái này lớp 9 thì bó tay thôi 

9 tháng 9 2017

chị đã ghi rõ là toán lớp 9 mà em ko biết làm cũng phải thôi :))

15 tháng 7 2018

b,ta có :\(\frac{sin^2a-cos^2a\left(1-cos^2a\right)}{cos^2a-sin^2a\left(1-sin^2a\right)}=\frac{sin^4a}{cos^4a}\)

=>\(\frac{sin^2a-sin^2a.cos^2a}{cos^2a-sin^2a.cos^2a}=\frac{sin^4a}{cos^4a}\)

=>\(\frac{sin^2a\left(1-cos^2a\right)}{cos^2a\left(1-sin^2a\right)}=\frac{sin^4a}{cos^4a}\)

=>\(\frac{sin^4a}{cos^4a}=\frac{sin^4a}{cos^4a}\)luon dung => dpcm

20 tháng 9 2017
Câu a dùng sin^2a+cos^2a=1 và a^2-b^2=(a-b)(a+b). Kết quả=sin^2 Câu b tương tự=2 Câu c tách sina ra ngoài và được sin^3a Câu d dùng hđt a^2+2ab+b^2=(a+b)^2 và kết quả là 1 Câu e tách tan^2a ra ngoài và được tan^2*cos^2 mà tana=sina/cosa. Kết quả bằng sin^2a Câu f có tan^2*cos^2=sin^2a nên kết quả câu f=1 Chú thích chút ^ là mũ, a là alpha,* là nhân