\(\frac{2}{3}\). Hãy tính cos α, tan α, cot α (Không tính số...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
15 tháng 10 2020

Lời giải:

Ta biết:

$\sin ^2a+\cos ^2a=1$

$\Rightarrow \cos ^2a=1-\sin ^2a=1-(\frac{2}{3})^2=\frac{5}{9}$

$\Rightarrow \cos a=\frac{\sqrt{5}}{3}$

$\tan a=\frac{\sin a}{\cos a}=\frac{2}{3}:\frac{\sqrt{5}}{3}=\frac{2}{\sqrt{5}}$

$\cot a=\frac{1}{\tan a}=\frac{\sqrt{5}}{2}$

21 tháng 7 2021

`sin^2 α+cos^2α=1`

`<=> (2/3)^2+cos^2α=1`

`=> cosα= \sqrt5/3`

`=> tan α=(sinα)/(cosα) = (2\sqrt5)/5`

`=> cota = 1/(tanα)=sqrt5/2`

17 tháng 11 2021

\(\sin^2\alpha+\cos^2\alpha=1\\ \Rightarrow\cos^2\alpha=1-0,6^2=0,64\\ \Rightarrow\cos\alpha=0,8=\dfrac{4}{5}\\ \tan\alpha=\dfrac{\sin\alpha}{\cos\alpha}=\dfrac{0,6}{0,8}=\dfrac{3}{4}\\ \cot\alpha=\dfrac{1}{\tan\alpha}=\dfrac{1}{0,75}=\dfrac{4}{3}\)

4 tháng 8 2021

`sin^2 α+cos^2 α =1`

`=> sinα =\sqrt(1-cos^2α)=\sqrt(1-(3/4)^2) = \sqrt7/4`

`=> tanα=(sinα)/(cosα)=(3\sqrt7)/7`

`=> cotα=1/(tanα)=\sqrt7/3`

4 tháng 8 2021

Đề bài cho cos rồi tính cos làm gì nhỉ =))) Mình tính sin thay vào chỗ đấy nhé.

-------------------------------------------------------------------------------------------------------

\(cos\alpha=\dfrac{3}{4}\Rightarrow cos^2\alpha=\dfrac{9}{16}\)

Mà \(sin^2\alpha+cos^2\alpha=1\)

\(\Rightarrow sin^2\alpha=1-cos^2\alpha=1-\dfrac{9}{16}=\dfrac{7}{16}\)

\(\Rightarrow cos\alpha=\dfrac{\sqrt{7}}{4}\\ \Rightarrow tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{\dfrac{3}{4}}{\dfrac{\sqrt{7}}{4}}=\dfrac{3\sqrt{7}}{7}\\ \Rightarrow cot\alpha=\dfrac{1}{tan\alpha}=\dfrac{\sqrt{7}}{3}\)

29 tháng 8 2021

Cos^2(a) = 1/(1+tan^2(a)) = 4/13

--> cosa = 2sqrt(13)/13

Sin^2(a)=1-4/13=9/13

--> sina = 3sqrt(13)/13

29 tháng 8 2021

Cota = 2/3 --> tana = 3/2

 

6 tháng 11 2021

Vì \(\tan\alpha\cdot\cot\alpha=1\Leftrightarrow\cot\alpha=\dfrac{1}{2,15}=\dfrac{20}{43}\)

28 tháng 6 2021

\(sin\alpha^2+cos\alpha^2=1\Rightarrow sin\alpha^2=1-cos\alpha^2=1-\dfrac{1}{25}=\dfrac{24}{25}\Rightarrow sin\alpha=\dfrac{2\sqrt{6}}{5}\)

\(\Rightarrow cot\alpha=\dfrac{cos\alpha}{sin\alpha}=\dfrac{1}{5}:\dfrac{2\sqrt{6}}{5}=\dfrac{1}{2\sqrt{6}}=\dfrac{\sqrt{6}}{24}\)

\(\sin^2\alpha+\cos^2\alpha=1\)

\(\Leftrightarrow\sin^2\alpha=1-\dfrac{1}{25}=\dfrac{24}{25}\)

hay \(\sin\alpha=\dfrac{2\sqrt{6}}{5}\)

\(\tan\alpha=\dfrac{\sin\alpha}{\cos\alpha}=\dfrac{2\sqrt{6}}{5}:\dfrac{1}{5}=2\sqrt{6}\)

\(\cot\alpha=\dfrac{1}{2\sqrt{6}}=\dfrac{\sqrt{6}}{12}\)

1: 

a: sin a=căn 3/2

\(cosa=\sqrt{1-sin^2a}=\sqrt{1-\dfrac{3}{4}}=\sqrt{\dfrac{1}{4}}=\dfrac{1}{2}\)

\(tana=\dfrac{\sqrt{3}}{2}:\dfrac{1}{2}=\sqrt{3}\)

cot a=1/tan a=1/căn 3

b: \(tana=2\)

=>cot a=1/tan a=1/2

\(1+tan^2a=\dfrac{1}{cos^2a}\)

=>\(\dfrac{1}{cos^2a}=5\)

=>cos^2a=1/5

=>cosa=1/căn 5

\(sina=\sqrt{1-cos^2a}=\sqrt{\dfrac{4}{5}}=\dfrac{2}{\sqrt{5}}\)

c: \(cosa=\sqrt{1-\left(\dfrac{5}{13}\right)^2}=\dfrac{12}{13}\)

tan a=5/13:12/13=5/12

cot a=1:5/12=12/5

NV
3 tháng 9 2020

\(\frac{1-tana}{1+tana}=\frac{1-\frac{sina}{cosa}}{1+\frac{sina}{cosa}}=\frac{\frac{1}{cosa}\left(cosa-sina\right)}{\frac{1}{cosa}\left(cosa+sina\right)}=\frac{cosa-sina}{cosa+sina}\)

25 tháng 9 2018

Đáp án cần chọn là: D

Ta có : P = sin3 α + cos3 α = ( sinα + cosα) - 3sin α.cosα(sinα + cosα)

Ta có (sin α + cos α) = sin2α + cos2α +  2sinα.cosα = 1 + 24/25 = 49/25.

Vì sin α + cosα > 0  nên ta chọn sinα + cosα = 7/5.

Thay   vào P ta được