Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/tren cung 1 nua mat phang bo chua tia OA tia OC nam giua 2 tia OA, OB vi goc AOC< goc AOB (40 do< 110 do)
ta co:goc BOC + goc AOC = goc AOB
suy ra goc BOC + 40 do= 110 do
suy ra goc BOC = 110 do - 40 do = 70 do
vay goc BOC = 70 do
b/ vi tia OD la tia doi cua tia OA nen :
goc BOD + goc BOA = 180 do
suy ra goc BOD + 110 do= 180 do
suy ra goc BOD = 180 do - 110 do = 70 do
vay goc BOD = 70 do
c/ tia OB co phai la tia phan giac cua goc COD vi goc BOC = BOD (= 70 do) va tia OB nam giua 2 tia OC, OD
mik chua chac dung dau vi mik nam nay moi vao lop 7 nhung nho k cho mik nha
Pạn tự vẽ hình nha!!!
Bài Làm
a, Ta có: \(\widehat{BOC}\) kề bù \(\widehat{AOB}\) (gt)
\(\Rightarrow\) OC và OA là hai tia đối nhau (1)
Lại có: \(\widehat{AOD}\) kề bù \(\widehat{AOB}\) (gt)
\(\Rightarrow\) OB và OD là hai tia đối nhau (2)
Từ (1) và (2) \(\Rightarrow\widehat{BOC}\) và \(\widehat{AOD}\) là hai góc đối đỉnh (đpcm)
b, Gọi Om, On lần lượt là hai tia phân giác của \(\widehat{BOC}\) và \(\widehat{AOD}\)
\(\Rightarrow\left\{{}\begin{matrix}\widehat{BOm}=\widehat{mOC}=\widehat{\frac{BOC}{2}}\\\widehat{AOn}=\widehat{nOD}=\frac{\widehat{AOD}}{2}\end{matrix}\right.\)
Mà \(\widehat{BOC}=\widehat{AOD}\) ( hai góc đối đỉnh )
\(\Rightarrow\widehat{BOm}=\widehat{mOC}=\widehat{AOn}=\widehat{nOD}\)
Ta có: \(\widehat{AOB}+\widehat{AOD}=180^0\) ( hai góc kề bù )
\(\Rightarrow\widehat{AOB}+\widehat{AOn}+\widehat{nOD}=180^0\)
\(\Rightarrow\widehat{AOB}+\widehat{AOn}+\widehat{BOm}=180^0\)
\(\Rightarrow\widehat{mOn}=180^0\)
\(\Rightarrow\) Om và On là hai tia đối nhau (đpcm)
Chúc pạn hok tốt!!!
Kham khảo này :
https://imgur.com/LTMZXHU
https://imgur.com/O7e7GYo