K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2018

Hai góc AOC và BOC kề bù nên  A O C ^ + B O C ^ = 180 °

⇒ B O C ^ = 180 ° − 150 ° = 30 ° .

Tương tự, ta tính được A O D ^ = 30 ° .

Ta có B O E ^ = A O D ^ = 30 °  (hai góc đối đỉnh).

Suy ra B O C ^ = B O E ^ = 30 ° . (1)

Tia OB nằm giữa hai tia OC và OE. (2)

Từ (1) và (2) ta được tia OB là tia phân giác của góc COE

Đếm góc, đếm tia

11 tháng 8 2023

Các anh chị giúp em với ạ

góc AOC+góc BOC=180 độ

=>góc BOC=180-150=30 độ

góc AOD+góc BOD=180 độ

=>góc AOD=180-150=30 độ

góc AOD=góc BOE(hai góc đối đỉnh)

góc AOD=góc BOC(=30 độ)

=>góc BOC=góc BOE

=>OB là phân giác của góc COE

16 tháng 9 2020

                                             O A B C D E

a) Ta có : \(\widehat{AOC}+\widehat{COB}=180^o\)( kề bù )

                  \(135^o+\widehat{COB}=180^o\)

                                   \(\widehat{COB}=180^o-135^o\)

                                   \(\widehat{COB}=45^o\)

Ta có : \(\widehat{BOC}+\widehat{COD}=\widehat{BOD}\)

                \(45^o+\widehat{COD}=135^o\)

                              \(\widehat{COD}=135^o-45^o\)

                              \(\widehat{COD}=90^o\)

Ta có : \(\widehat{DOC}+\widehat{COE}=180^o\)( kề bù )

                 \(90^o+\widehat{COE}=180^o\)

                               \(\widehat{COE}=90^o\)

\(\Rightarrow OC\perp OE\)

b) Ta có : \(\widehat{COB}+\widehat{BOE}=\widehat{COE}\)

                    \(45^o+\widehat{BOE}=90^o\)

                                  \(\widehat{BOE}=90^o-45^o\)

                                  \(\widehat{BOE}=45^o\)

\(\Rightarrow\widehat{BOE}=\widehat{COB}=\frac{\widehat{COE}}{2}\)

Vậy OB là tia phân giác của \(\widehat{COE}\)

16 tháng 9 2020

                                                           Bài giải

A O B C D E

 Ta có : \(\widehat{AOC}=\widehat{BOD}\left(=135^o\right)\)

 \(\widehat{DOC}\) chung và OC và OD cùng nằm trên cùng một nửa mặt phẳng nên \(\widehat{DOA}=\widehat{COB}\)

Mà \(\widehat{DOA}=\widehat{EOB}\) ( hai góc đối đỉnh ) nên \(\widehat{BOC}=\widehat{BOE}\)

\(\Rightarrow\text{ }OB\text{ là tia phân giác }\widehat{COE}\)

Ta có : \(\widehat{BOE}\) và \(\widehat{BOD}\) kề bù nên \(\widehat{BOE}+\widehat{BOD}=180^o\)

                                                       \(\Rightarrow\text{ }\widehat{BOE}+135^o=180^o\text{ }\Rightarrow\text{ }\widehat{BOE}=45^o\)

  Ta lại có : \(\widehat{COD}+\widehat{COE}=180^o\)

\(\widehat{COD}+90^o=180^o\)

\(\widehat{COD}=90^o\)

\(\text{ }\Rightarrow\text{ }OC\perp OE\)

13 tháng 7 2017

O D C A E B

a) Ta có:

\(\widehat{DOA}=\widehat{COB}\left(=160^o-\widehat{DOC}\right)\) (1)

\(\widehat{DOA}=\widehat{EOB}\) (2 góc đối đỉnh) (2)

Từ (1) và (2) \(\Rightarrow\widehat{COB}=\widehat{BOE}\left(đpcm\right)\)

b) Vì \(\widehat{COB}=\widehat{BOE}\) (cmt)

\(\Rightarrow OB\) là phân giác của \(\widehat{COE}\)

14 tháng 8 2016

Ta có : Góc COA = góc AOE ; góc BOD = góc BOF

Mà góc BOD + góc COD + góc COA = 180 độ ; góc AOE + góc EOF + góc BOF = 180 độ

=> góc COD = góc EOF = 90 độ

=> OE vuông góc với OF

26 tháng 8 2017

Chỉ cần chứng minh góc đấy ( FOE = 90 độ )

26 tháng 8 2017

Do OC vuông góc với OD

\(\Rightarrow\widehat{COD}=90^o\)

    Do OA là tia p.g của \(\widehat{COE}\)

         OB là tia p.g của \(\widehat{DOF}\)

\(\Rightarrow\widehat{COD}\)đối đỉnh \(\widehat{EOF}\)

\(\widehat{COD}=90^o\)

\(\Rightarrow\widehat{EOF}=90^o\)

mà góc EOF = \(90^o\)

\(\Rightarrow\)OE vuông góc OF