K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2020

thiếu đề nx kìa :v

22 tháng 7 2020

f(-1)=1-a+b; f(0)=b; f(1)=1+a+b

theo giả thiết có: \(\hept{\begin{cases}\frac{-1}{2}\le b\le\frac{1}{2}\left(1\right)\\\frac{-1}{2}\le1-a+b\le\frac{1}{2}\Leftrightarrow\frac{-3}{2}\le-a+b\le\frac{-1}{2}\left(2\right)\\\frac{-1}{2}\le1+a+b\le\frac{1}{2}\Leftrightarrow\frac{-3}{2}\le a+b\le\frac{-1}{2}\left(3\right)\end{cases}}\)

cộng theo từng vế của (2) và (3) có: \(\frac{-3}{2}\le b\le\frac{-1}{2}\left(4\right)\)

từ (1) và (4) ta có: \(b=\frac{-1}{2}\), thay vào (2) và (3) ta được a=0

vậy đa thức cần tìm là \(f\left(x\right)=x^2-\frac{1}{2}\)

22 tháng 7 2020

+)\(\left|f\left(x\right)\right|\le\frac{1}{2}\Leftrightarrow-\frac{1}{2}\le f\left(x\right)\le\frac{1}{2}\)

+)\(x^2+ax+b=x^2+2\cdot\frac{a}{2}\cdot x+b+\frac{a^2}{4}-\frac{a^2}{4}+b=\left(x+\frac{a}{2}\right)^2+b-\frac{a^2}{4}\)

\(\ge b-\frac{a^2}{4}=-\frac{1}{2}\)

+)\(f\left(x\right)\)có đồ thị quay lên nên đạt giá trị lớn nhất khi x=1 hoặc x=-1
+) Khi x=1 thì \(a+b+1=\frac{1}{2}\Leftrightarrow a+b=-\frac{1}{2}\)

+) Khi x=-1 thì \(b-a+1=\frac{1}{2}\Leftrightarrow b-a=-\frac{1}{2}\)

+) TH1: \(\hept{\begin{cases}a+b=-\frac{1}{2}\\b-\frac{a^2}{4}=-\frac{1}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}a=0\\b=-\frac{1}{2}\end{cases}}}\)

+) TH2: \(\hept{\begin{cases}b-a=-\frac{1}{2}\\b-\frac{a^2}{4}=-\frac{1}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}a=0\\b=-\frac{1}{2}\end{cases}}}\)

Vậy a=0, b=1/2

P/s: Bài này mình không chắc chắn lắm nhé!

Đề: tìm x biết : \(2.\left|2-x\right|+3.\left|x+1\right|-x+1=2x\) giải •nếu \(-1>x\) thì: \(\left|2-x\right|=2-x\\ \left|x+1\right|=-x-1\) •nếu \(-1\le x< 2\) thì: \(\left|2-x\right|=2-x\\ \left|x+1\right|=x+1\) •nếu\(x\ge2\) thì: \(\left|2-x\right|=x-2\\ \left|x+1\right|=x+1\) ◘ từ 3 ĐK trên, ta có: \(\left[{}\begin{matrix}2.\left(2-x\right)+3.\left(-x-1\right)-x+1=2x\left(với\:-1>x\right)\\2.\left(2-x\right)+3.\left(x+1\right)-x+1=2x\left(với\:-1\le x<...
Đọc tiếp

Đề: tìm x biết : \(2.\left|2-x\right|+3.\left|x+1\right|-x+1=2x\)

giải

•nếu \(-1>x\) thì: \(\left|2-x\right|=2-x\\ \left|x+1\right|=-x-1\)

•nếu \(-1\le x< 2\) thì: \(\left|2-x\right|=2-x\\ \left|x+1\right|=x+1\)

•nếu\(x\ge2\) thì: \(\left|2-x\right|=x-2\\ \left|x+1\right|=x+1\)

◘ từ 3 ĐK trên, ta có:

\(\left[{}\begin{matrix}2.\left(2-x\right)+3.\left(-x-1\right)-x+1=2x\left(với\:-1>x\right)\\2.\left(2-x\right)+3.\left(x+1\right)-x+1=2x\left(với\:-1\le x< 2\right)\\2.\left(x-2\right)+3.\left(x+1\right)-x+1=2x\left(với\:x\ge2\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4-2x-3x-3-x+1=2x\\4-2x+3x+3-x+1=2x\\2x-4+3x+3-x+1=2x\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}-8x=-2\\-2x=-8\\2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{4}\left(loại\right)\\x=4\left(loại\right)\\x=0\left(loại\right)\end{matrix}\right.\)

vậy phương trình đã cho vô nghiệm.

P/S: giải dùm cho 1 bạn nhờ, đừng ném đa hay gạch j nhé !!!

My name is ???

1

My name is ???

27 tháng 9 2017

\(\left(x+1\right)\left(y+1\right)=8\\ \Rightarrow xy+x+y+1=8\\ \Rightarrow xy+x+y=7\)

\(x\left(x+1\right)+y\left(y+1\right)+xy=17\\ \Rightarrow x^2+y^2+x+y+xy=17\\ \Rightarrow x^2+y^2=10\)

NV
4 tháng 6 2019

\(x^3+3y^2-6y+3+8=0\Leftrightarrow3\left(y-1\right)^2=-x^3-8\)

\(3\left(y-1\right)^2\ge0\Rightarrow-x^3-8\ge0\Rightarrow x\le-2\) (1)

Từ pt sau ta có:

\(\left(x^2-3\right).y^2-2y+x^2-3=0\)

\(\Delta'=1-\left(x^2-3\right)^2\ge0\Leftrightarrow-1\le x^2-3\le1\)

\(\Rightarrow2\le x^2\le4\Rightarrow\left|x\right|\le2\Rightarrow x\ge-2\) (2)

Từ (1) và (2) \(\Rightarrow x=-2\Rightarrow y=1\) \(\Rightarrow A=-7\)

27 tháng 9 2017

a)\(\hept{\begin{cases}2x-3y=1\\4x-5y=2\end{cases}\Leftrightarrow\hept{\begin{cases}4x-6y=2\\4x-5y=2\end{cases}}}\)

Trừ 2 vế lại ta được 

\(4x-4x-6y+5y=0\Leftrightarrow-y=0\Leftrightarrow y=0\)

\(\Rightarrow x=\frac{1}{2}\)