Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f(x)= ax^3+4x(x^2-1)+8 = ax^3 + 4x^3 - 4x + 8 = (a + 4)x^3 - 4x + 8
g(x)= x^3 - 4x(bx+1) +c-3 = x^3 - 4bx^2 - 4x + c - 3
Để f(x)=g(x) thì a + 4 = 1, -4b =0 và c - 3 = 8
=> a = -3, b = 0, c = 11
f(x)= ax3+4x(x2-1)+8 = ax3 + 4x3 - 4x + 8 = (a + 4)x3 - 4x + 8
g(x)= x3 - 4x(bx+1) +c-3 = x3 - 4bx2 - 4x + c - 3
Để f(x)=g(x) thì a + 4 = 1, -4b =0 và c - 3 = 8
=> a = -3, b = 0, c = 11
47 học sinh nha bạnmình ko biết câu lời giải nên giải vậy k nha
Có lẽ bạn nên sửa đề thành \(f\left(x\right)=...x^2+1...\)hoặc là \(g\left(x\right)=...\left(bx-1\right)...\)
Ta có:
\(f\left(x\right)=ax^3+4x^3-4x+8=\left(a+4\right)x^3-4x+8\)
\(g\left(x\right)=x^3+4x\left(bx-1\right)+c-3=x^3+4bx^2-4x+c-3\)
Để \(f\left(x\right)=g\left(x\right)\Leftrightarrow\hept{\begin{cases}a+4=1\\4b=0\\c-3=8\end{cases}\Leftrightarrow\hept{\begin{cases}a=-3\\b=0\\c=11\end{cases}}}\)
Kết luận
Lời giải:
$f(x)=ax^3+4x^2+4$
$g(x)=x^3-4bx^2-4x-(c+3)$
Để $f(x)=g(x), \forall x$ thì:
\(\left\{\begin{matrix}\\
a=1\\
4=-4b\\
0=-4\\
4=-(c+3)\end{matrix}\right. (\text{vô lý})\)
Vậy không tồn tại $a,b,c$ thỏa mãn đề.