K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2017

Giải:

Thay \(b=3a+c\) vào đa thức \(f\left(x\right)\) ta được:

\(f\left(x\right)=ax^3+\left(3a+c\right)x^2+cx+d\)

\(=ax^3+3ax^2+cx^2+cx+d\)

Từ đó ta có:

\(f\left(1\right)=a.1^3+3a.1^2+c.1^2+c.1+d\)

\(=a+3a+c+c+d=4a+2c+d\left(1\right)\)

Ta lại có:

\(f\left(-2\right)=a.\left(-2\right)^3+3a.\left(-2\right)^2+c.\left(-2\right)^2\) \(+c.\left(-2\right)+d\)

\(=-8a+12a+4c-2c+d=\) \(4a+2c+d\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\) suy ra:

\(f\left(1\right)=f\left(-2\right)\left(=4a+2c+d\right)\) (Đpcm)

17 tháng 4 2020

Thay b = 3a + c vào f(x) = ax3 + bx2 + cx + d

Ta có: ax3 + (3a + c)x2 + cx + d = ax3 + 3ax2 + cx2 + cx + d

Lại có: f(1) = a . 13 + 3a . 12 + c . 12 + c . 1 + d = a + 3a + c + c + d = 4a + 2c + d           (1)

và f(-2) = a . (-2)3 + 3a . (-2)2 + c. (-2)2 + c . (-2) + d = -8a + 12a + 4c - 2c + d = 4a + 2c + d          (2)

Từ (1) và (2) => f(1) = f(-2)   (đpcm)

14 tháng 4 2016

Gia su :f(x)=0 tai x=1

=>a1^3+b1^2+c1+d=0

hay a+b+c=0       (1)

ma a+b+c=0 (gt)    (2)

Tu1va 2 suyra:x=1 la nghiem cua da thuc f(x)

14 tháng 4 2018

Ta có : 

\(f\left(x\right)=ax^3+bx^2+cx+d\)

\(\Rightarrow\hept{\begin{cases}f\left(1\right)=a.1^3+b.1^2+c.1+d\\f\left(-2\right)=a.\left(-2\right)^3+b.\left(-2\right)^2+c.2+d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}f\left(1\right)=a+b+c+d\\f\left(2\right)=a.-8+b.4+c.2+d\end{cases}}\)

Do  b = 3a = c 

\(\Rightarrow\hept{\begin{cases}f\left(1\right)=3a+3a+3a+d\\f\left(-2\right)=a.-8+3a.4+3a.2+d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}f\left(1\right)=9a+d\\f\left(-2\right)=-8a+12a+6a+d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}f\left(1\right)=9a+d\\f\left(-2\right)=10a+d\end{cases}}\)

Đến bước này , bạn tự làm tiếp nhé . 

Chúc bạn học tốt !!! 

27 tháng 4 2018

Hỏi đáp Toán