Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(3\right).f\left(-2\right)=\left(9a+3b+c\right)\left(4a-2b+c\right)\)
\(=\left[3\left(a+b\right)+6a+c\right]\left[-2\left(a+b\right)+6a+c\right]\)
\(=\left(6a+c\right)\left(6a+c\right)=\left(6a+c\right)^2\ge0\) (đpcm)
Theo bài ra ta có :
\(f\left(3\right)=a.3^2+3b+c=9a+3b+c\)
\(f\left(-2\right)=a\left(-2\right)^2+b\left(-2\right)+c=4a-2b+c\)
hay \(f\left(3\right).f\left(2\right)\ge0\)
\(\Leftrightarrow\left(9a+3b+c\right)\left(4a-2b+c\right)=0\)
Dấu ''='' xảy ra <=> \(a=b=c=0\)( thỏa mãn điều kiện )
Cho đa thức f(x)=ax2+bx+c với a,b,c là các số hữu tỉ thỏa mãn 2a-b=0
CMR: f(-5)×f(3) ko thể là số âm.
Lời giải:
Ta có:
$f(1)=a+b+c$
$f(-2)=4a-2b+c$
$\Rightarrow 2f(-2)+3f(1)=2(4a-2b+c)+3(a+b+c)=11a-b+5c=0$
$\Rightarrow f(-2)=\frac{-3}{2}f(1)$
Vì $\frac{-3}{2}<0$ nên $f(-2)$ và $f(1)$ không thể cùng dấu.
Lời giải:
$f(1)=a+b+c=6$
$f(2)=4a+2b+c=16$
$f(12)-f(-9)=(144a+12b+c)-(81a-9b+c)$
$=63a+21b=21(3a+b)$
$=21[(4a+2b+c)-(a+b+c)]=21(16-6)=21.10=210$