Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(bx^2=ay^{2^{ }}=\dfrac{x^2}{\dfrac{1}{b}}=\dfrac{y^2}{\dfrac{1}{a}}=\dfrac{x^2+y^2}{\dfrac{a+b}{ab}}=\dfrac{ab}{a+b}.\)
\(\Leftrightarrow\dfrac{x^2}{a}=\dfrac{1}{a+b}=\dfrac{y^2}{b}.\)
\(\dfrac{x^{2016}}{a^{1008}}+\dfrac{y^{2016}}{b^{1008}}=\left(\dfrac{x^2}{a}\right)^{1008}+\left(\dfrac{y^2}{b}\right)^{1008}=2.\left(\dfrac{1}{a+b}\right)^{1008}=\dfrac{2}{\left(a +b\right)^{1008}}\left(dpcm\right)\)
Theo bài ra ta có:
\(bx^2=ay^2\) \(\Rightarrow\dfrac{x^2}{a}=\dfrac{y^2}{b}\)
\(x^2+y^2=1\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\dfrac{x^2}{a}=\dfrac{y^2}{b}=\dfrac{x^2+y^2}{a+b}=\dfrac{1}{a+b}\)
\(\dfrac{x^2}{a}=\dfrac{y^2}{b}=\dfrac{1}{a+b}\) \(\left(1\right)\)
Từ \(\left(1\right)\) suy ra :
\(\dfrac{x^{2016}}{a^{1008}}+\dfrac{y^{2016}}{b^{1008}}\) \(=\dfrac{\left(x^2\right)^{1008}}{a^{1008}}+\dfrac{\left(y^2\right)^{1008}}{b^{1008}}\)
\(=\left(\dfrac{x^2}{a}\right)^{1008}+\left(\dfrac{y^2}{b}\right)^{1008}\)
\(=\left(\dfrac{1}{a+b}\right)^{1008}+\left(\dfrac{1}{a+b}\right)^{1008}\)
\(=2\cdot\left(\dfrac{1}{a+b}\right)^{1008}\)
\(=2\cdot\dfrac{1^{1008}}{\left(a+b\right)^{1008}}\)
\(=2\cdot\dfrac{1}{\left(a+b\right)^{1008}}\)
\(=\dfrac{2}{a+b}^{1008}\)
Vậy \(\dfrac{x^{2016}}{a^{1008}}+\dfrac{y^{2016}}{b^{1008}}=\dfrac{2}{a+b}^{1008}\)
\(\left|x-2016\right|+\left|1008-\frac{1}{2}y\right|=0\)
\(\Leftrightarrow\begin{cases}x-2016=0\\1008-\frac{1}{2}y=0\end{cases}\)\(\Leftrightarrow x=y=2016\)
\(\left|x-2016\right|+\left|1008-\frac{1}{2}y\right|=0\)
\(\Rightarrow\left|x-2016\right|=0\) và \(\left|1008-\frac{1}{2}y\right|=0\)
+) \(\left|x-2016\right|=0\Rightarrow x-2016=0\Rightarrow x=2016\)
+) \(\left|1008-\frac{1}{2}y\right|=0\)
\(\Rightarrow1008-\frac{1}{2}y=0\)
\(\Rightarrow\frac{1}{2}y=1008\)
\(\Rightarrow y=2016\)
Vậy \(x=y=2016\)
\(\left[\left(\frac{2}{1001}-\frac{3}{2002}\right).\frac{1001}{17}+\frac{33}{34}\right]:\left[\left(\frac{7}{1008}+\frac{11}{2016}\right).\frac{1008}{25}+\frac{1009}{2016}\right]\)
\(=\left[\left(\frac{4}{2002}-\frac{3}{2002}\right).\frac{1001}{17}+\frac{33}{34}\right]:\left[\left(\frac{14}{2016}+\frac{11}{2016}\right).\frac{1008}{25}+\frac{1009}{2016}\right]\)
\(=\left(\frac{1}{2002}.\frac{1001}{17}+\frac{33}{34}\right):\left(\frac{25}{2016}.\frac{1008}{25}+\frac{1009}{2016}\right)\)
\(=\left(\frac{1}{34}+\frac{33}{34}\right):\left(\frac{1}{2}+\frac{1009}{2016}\right)\)
\(=1:\frac{2017}{2016}\)
\(=\frac{2016}{2017}\)
Bài 2:
a) \(\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|-6x=0\)
\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|=6x\)
Ta có: \(\left|x+1\right|\ge0;\left|x+2\right|\ge0;\left|x+4\right|\ge0;\left|x+5\right|\ge0\)
\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|\ge0\)
\(\Rightarrow6x\ge0\)
\(\Rightarrow x\ge0\)
\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|=x+1+x+2+x+4+x+5=6x\)
\(\Rightarrow4x+12=6x\)
\(\Rightarrow2x=12\)
\(\Rightarrow x=6\)
Vậy x = 6
b) Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x-2}{2}=\frac{y-3}{3}=\frac{z-3}{4}=\frac{2y-6}{6}=\frac{3z-9}{12}=\frac{x-2-2y+6+3z-9}{2-6+12}=\frac{\left(x-2y+3z\right)-\left(2-6+9\right)}{8}\)
\(=\frac{14-5}{8}=\frac{9}{8}\)
+) \(\frac{x-2}{2}=\frac{9}{8}\Rightarrow x-2=\frac{9}{4}\Rightarrow x=\frac{17}{4}\)
+) \(\frac{y-3}{3}=\frac{9}{8}\Rightarrow y-3=\frac{27}{8}\Rightarrow y=\frac{51}{8}\)
+) \(\frac{z-3}{4}=\frac{9}{8}\Rightarrow z-3=\frac{9}{2}\Rightarrow z=\frac{15}{2}\)
Vậy ...
c) \(5^x+5^{x+1}+5^{x+2}=3875\)
\(\Rightarrow5^x+5^x.5+5^x.5^2=3875\)
\(\Rightarrow5^x.\left(1+5+5^2\right)=3875\)
\(\Rightarrow5^x.31=3875\)
\(\Rightarrow5^x=125\)
\(\Rightarrow5^x=5^3\)
\(\Rightarrow x=3\)
Vậy x = 3
Bài 1 :
\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2018}}{\frac{2017}{1}+\frac{2016}{2}+\frac{2015}{3}+...+\frac{1}{2017}}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2018}}{\left(\frac{2017}{1}+1\right)+\left(\frac{2016}{2}+1\right)+\left(\frac{2015}{3}+1\right)+...+\left(\frac{1}{2017}+1\right)+1}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2018}}{\frac{2018}{1}+\frac{2018}{2}+\frac{2018}{3}+....+\frac{2018}{2017}+\frac{2018}{2018}}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2018}}{2018.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}+\frac{1}{2018}\right)}\)
\(=\frac{1}{2018}\)
B=\(\frac{\frac{1}{51}+\frac{1}{53}+...+\frac{1}{149}}{\frac{1}{101.99}+\frac{1}{103.97}+...+\frac{1}{149.51}}\)
\(\)TA CÓ E=\(\frac{1}{101.99}+\frac{1}{103.97}+...+\frac{1}{149.51}\)
\(200E=\frac{200}{101.99}+\frac{200}{103.97}+..+\frac{200}{149.51}\)
\(200E=\frac{101+99}{101.99}+\frac{103+97}{103.97}+...+\frac{149+51}{149.51}\)
\(200E=\frac{1}{99}+\frac{1}{101}+\frac{1}{97}+\frac{1}{103}+...+\frac{1}{51}+\frac{1}{149}\)
\(200E=\frac{1}{51}+\frac{1}{53}+...+\frac{1}{147}+\frac{1}{149}\)
\(E=\left(\frac{1}{51}+\frac{1}{53}+...+\frac{1}{147}+\frac{1}{149}\right):200\)\(=\left(\frac{1}{51}+\frac{1}{53}+...+\frac{1}{147}+\frac{1}{149}\right).\frac{1}{200}\)
\(\Rightarrow B=\frac{1}{51}+\frac{1}{53}+...+\frac{1}{149}\)/\(\left(\frac{1}{51}+\frac{1}{53}+..+\frac{1}{149}\right).\frac{1}{200}\)
\(\Rightarrow B=\frac{1}{\frac{1}{200}}=200\)
VẬY B=200