K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2016

b, \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)

\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)

\(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

áp dụng dãy tỉ số bằng nhau :

\(\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)

x = 2 . 10 = 20

y = 2 . 15 = 30

z = 2 . 21 = 42 

Vậy : ..... 

13 tháng 3 2016

a, \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)

MSC của y là : 20

Có: \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

Áp dụng dãy tỉ số bằng nhau, ta có: 

\(2x+3y-z=186\)

\(\Rightarrow2.15+3.20-28=30+60-28=62\)

\(\frac{186}{62}=3\)

 x = 3 . 15 = 45

 y = 3 . 20 = 60

 z = 3 . 28 = 84

Vậy: ..... 

16 tháng 9 2018

Ta có \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)

\(=\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\)

\(=\frac{x-1-\left(2y-4\right)+3z-9}{2-6+12}\)

\(=\frac{x-1-2y+4+3z-9}{8}\)

\(=\frac{\left(x-2y+3z\right)-6}{8}=\frac{14-6}{8}=\frac{8}{8}=1\)

Có \(\frac{x-1}{2}=1\Rightarrow x-1=2\Rightarrow x=3\)

\(\frac{y-2}{3}=1\Rightarrow y-2=3\Rightarrow y=5\)

\(\frac{z-3}{4}=1\Rightarrow z-3=4\Rightarrow z=7\)

16 tháng 10 2019

\(2x^2+2y^2-3z^2=-100\left(1\right)\)

Đặt \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\)\(\Rightarrow\left\{{}\begin{matrix}x=3k\\y=4k\\z=5k\end{matrix}\right.\)\(\left(2\right)\)

Thay (2) vào (1) ta được:

\(2.\left(3k\right)^2+2.\left(4k\right)^2-3.\left(5k\right)^2=-100\)

\(\Leftrightarrow18k^2+32k^2-75k^2=-100\)

\(\Leftrightarrow-25k^2=-100\)

\(\Leftrightarrow k^2=4\)

\(\Leftrightarrow k=\pm2\)

TH1: Thay k=2 vào (2) ta được

\(\left\{{}\begin{matrix}x=3.2=6\\y=4.2=8\\z=5.2=10\end{matrix}\right.\)

TH2: Thay k=-2 vào (2) ta được:

\(\left\{{}\begin{matrix}x=3.\left(-2\right)=-6\\y=4.\left(-2\right)=-8\\z=5.2\left(-2\right)=-10\end{matrix}\right.\)

Vậy \(\left(x,y,z\right)=\left\{\left(6,8,10\right);\left(-6,-8,-10\right)\right\}\)

16 tháng 10 2019

Ta có: \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}.\)

=> \(\frac{x^2}{9}=\frac{y^2}{16}=\frac{z^2}{25}\)

=> \(\frac{2x^2}{18}=\frac{2y^2}{32}=\frac{3z^2}{75}\)\(2x^2+2y^2-3z^2=-100.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{2x^2}{18}=\frac{2y^2}{32}=\frac{3z^2}{75}=\frac{2x^2+2y^2-3z^2}{18+32-75}=\frac{-100}{-25}=4.\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{x^2}{9}=4\Rightarrow x^2=36\Rightarrow\left[{}\begin{matrix}x=6\\x=-6\end{matrix}\right.\\\frac{y^2}{16}=4\Rightarrow y^2=64\Rightarrow\left[{}\begin{matrix}y=8\\y=-8\end{matrix}\right.\\\frac{z^2}{25}=4\Rightarrow z^2=100\Rightarrow\left[{}\begin{matrix}z=10\\z=-10\end{matrix}\right.\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)=\left(6;8;10\right),\left(-6;-8;-10\right).\)

Chúc bạn học tốt!

16 tháng 6 2021

x : y : z : t = 2 : 3 : 4 : 5

\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{t}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{t}{5}=\frac{x+y+z+t}{2+3+4+5}=\frac{2}{7}\)

\(\Rightarrow x=\frac{2}{7}.2=\frac{4}{7};y=\frac{2}{7}.3=\frac{6}{7};z=\frac{2}{7}.4=\frac{8}{7};t=\frac{2}{7}.5=\frac{10}{7}\)

Ta có: \(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{4}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15};\frac{y}{15}=\frac{z}{12}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{12}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{12}=\frac{x-y+z}{10-15+12}=\frac{49}{7}=7\)

\(\Rightarrow x=7.10=70;y=7.15=105;z=7.12=84\)

16 tháng 6 2021

Dù nhầm nhưng cũng thank nha