K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2016

Giải:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)

a) Ta có:

\(\frac{11a+3b}{11c+3d}=\frac{11bk+3b}{11dk+3d}=\frac{b\left(11k+3\right)}{d\left(11k+3\right)}=\frac{b}{d}\) (1)

\(\frac{3a-11b}{3c-11d}=\frac{3bk-11b}{3dk-11d}=\frac{b\left(3k-11\right)}{d\left(3k-11\right)}=\frac{b}{d}\) (2)

Từ (1) và (2) suy ra \(\frac{11a+3b}{11c+3d}=\frac{3a-11b}{3c-11d}\) (đpcm)

b) Ta có:

\(\frac{1111c-99d}{9999c-11d}=\frac{1111dk-99d}{9999dk-11d}=\frac{d\left(1111k-99\right)}{d\left(9999k-11\right)}=\frac{1111k-99}{9999k-11}\) (1)

\(\frac{1111a-99b}{9999a-11b}=\frac{1111bk-99b}{9999bk-11b}=\frac{b\left(1111k-99\right)}{b\left(9999k-11\right)}=\frac{1111k-99}{9999k-11}\) (2)

Từ (1) và (2) suy ra \(\frac{1111c-99d}{9999c-11d}=\frac{1111a-99b}{9999a-11b}\) (đpcm)

19 tháng 10 2016

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\begin{cases}a=bk\\c=dk\end{cases}\)

Ta có: \(\frac{1111.c-99.d}{9999.c-11.d}=\frac{11.\left(101.c-9.d\right)}{11.\left(909.c-d\right)}=\frac{101.c-9.d}{909.c-d}=\frac{101.dk-9.d}{909.dk-d}=\frac{d.\left(101k-9\right)}{d.\left(909k-1\right)}=\frac{101k-9}{909k-1}\left(1\right)\)

\(\frac{1111.a-99.b}{9999.a-11.b}=\frac{11.\left(101a-9b\right)}{11.\left(909a-b\right)}=\frac{101a-9b}{909a-b}=\frac{101.bk-9b}{909.bk-b}=\frac{b.\left(101k-9\right)}{b.\left(909k-1\right)}=\frac{101k-9}{909k-1}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{1111.c-99.d}{9999.c-11.d}=\frac{1111.a-99.b}{9999.a-11.b}\left(đpcm\right)\)

 

19 tháng 10 2016

Đặt \(k=\frac{a}{b}=\frac{c}{d}\Rightarrow\begin{cases}a=kb\\c=kd\end{cases}\)

=> \(\frac{1111c-99d}{9999c-11d}=\frac{1111kd-99d}{9999kd-11d}=\frac{d\left(1111k-99\right)}{d\left(9999k-11\right)}=\frac{1111k-99}{9999k-11}\left(1\right)\)

\(\frac{1111a-99b}{9999a-11b}=\frac{1111kb-99b}{9999kb-11b}=\frac{b\left(1111k-99\right)}{b\left(9999k-11\right)}=\frac{1111k-99}{9999k-11}\left(2\right)\)

Từ (1) và (2) => \(\frac{1111c-99d}{9999c-11d}=\frac{1111a-99b}{9999a-11b}\)

3 tháng 10 2018

Đặt : \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk;c=dk\)

\(\Rightarrow\frac{7b^2k^2+3bkb}{11b^2k^2-8b^2}=\frac{7d^2k^2+3dkd}{11d^2k^2-8d^2}\)

\(\Rightarrow\frac{b^2\left(7k^2+3k\right)}{b^2\left(11k^2-8\right)}=\frac{d^2\left(7k^2+3k\right)}{d^2\left(11k^2-8\right)}\)

\(\Rightarrow\frac{7k^2+3k}{11k^2-8}=\frac{7k^2+3k}{11k^2-8}\left(đpcm\right)\)

15 tháng 9 2019

anh tốt ghê đăng lên giúp em đấy

anh đăng lên nhờ người giúp nhưng ko có ai ☹️ ☹️ ☹️

18 tháng 10 2019

lấy cái đó nhân cái đó ,trừ cái đó

16 tháng 8 2019

bạn vào câu hỏi tương tự ấy

\(B=\frac{1}{3}-\frac{3}{4}+0,6+\frac{1}{64}-\frac{2}{9}-\frac{1}{36}+\frac{1}{15}\)

\(\Rightarrow B=\frac{3}{15}-\frac{48}{64}+\frac{9}{15}+\frac{1}{64}-\frac{8}{36}-\frac{1}{36}+\frac{1}{15}\)

\(\Rightarrow B=\frac{3}{15}+\frac{9}{15}+\frac{1}{15}+\left(-\frac{48}{64}+\frac{1}{64}\right)+\left(-\frac{8}{36}-\frac{1}{36}\right)\)

\(\Rightarrow B=\frac{13}{15}-\frac{47}{64}-\frac{1}{4}\)

\(\Rightarrow B=-\frac{113}{960}\)

\(C=0\)

\(D=\frac{1}{99}-\frac{1}{99.98}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(\Rightarrow D=\frac{1}{99}-\frac{1}{99}+\frac{1}{98}-\frac{1}{98}+...-\frac{1}{3}+\frac{1}{2}-\frac{1}{2}+1\)

\(\Rightarrow D=1\)

11 tháng 8 2019

D= \(\frac{1}{99}-\frac{1}{99.98}-\frac{1}{98.97}......-\frac{1}{3.2}-\frac{1}{2.1}\)

=\(\frac{1}{99}-\left(\frac{1}{1.2}+\frac{1}{2.3}+.......+\frac{1}{97.98}+\frac{1}{98.99}\right)\)

=\(\frac{1}{99}-\left(1-\frac{1}{2}+\frac{1}{2}-.....-\frac{1}{98}-\frac{1}{99}\right)\)

=\(\frac{1}{99}-\left[1-(\frac{1}{2}-\frac{1}{2}+......+\frac{1}{98}-\frac{1}{99})\right]\)

=\(\frac{1}{99}-\left(1-0-0-.....-0-\frac{1}{99}\right)\)

=\(\frac{1}{99}-1-\frac{1}{99}\)

=1