K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2019

Đề phải thêm là \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\) nhé.

Ta có: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}.\)

\(\Rightarrow\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a+b+c}{b+c+d}.\frac{a+b+c}{b+c+d}.\frac{a+b+c}{b+c+d}\)

\(\Rightarrow\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}\)

\(\Rightarrow\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}.\)

\(\Rightarrow\frac{a}{d}=\frac{\left(a+b+c\right)^3}{\left(b+c+d\right)^3}\left(đpcm\right).\)

Chúc bạn học tốt!

1 tháng 11 2019

Nhanh giùm với ạ TTTT

1 tháng 11 2018

Câu hỏi của Lê Thị Trà MI - Toán lớp 7 - Học toán với OnlineMath Bạn xem bài làm tương tự ở link này nhé!

11 tháng 10 2017

vì \(\frac{a}{b}\)=\(\frac{c}{d}\)=>\(\frac{a^{2017}}{b^{2017}}\) =\(\frac{c^{2017}}{d^{2017}}\) 

áp dụng tính chất dãy tỉ số bằng nhau

=> \(\frac{a^{2017}}{b^{2017}}\) =\(\frac{c^{2017}}{d^{2017}}\)\(\frac{a^{2017}+c^{2017}}{b^{2017}+d^{2017}}\)=\(\frac{a^{2017}-c^{2017}}{b^{2017}-d^{2017}}\)=\(\frac{\left(a-b\right)^{2017}}{\left(c-d\right)^{2017}}\)(diều phải chứng minh

11 tháng 10 2017

Từ \(\frac{a}{b}=\frac{c}{d}=k\)

Suy ra a=bk

           c=dk

Ta có

\(\frac{a^{2017}+b^{2017}}{c^{2017}+d^{2017}}=\frac{\left(bk\right)^{2017}+b^{2017}}{\left(dk\right)^{2017}+d^{2017}}=\frac{b^{2017}.k^{2017}+b^{2017}}{d^{2017}.k^{2017}+d^{2017}}=\frac{b^{^{2017}}\left(k^{2017}+\right)}{d^{2017}\left(k^{2017}+1\right)}=\frac{b^{2017}}{d^{2017}}\)(1)

Ta có

\(\frac{\left(a-b\right)^{2017}}{\left(c-d\right)^{2017}}=\frac{\left(bk-b\right)^{2017}}{\left(dk-d\right)^{2017}}=\frac{\left(b\left(k-1\right)\right)^{2017}}{\left(d\left(k-1\right)\right)^{2017}}=^{\frac{b^{2017}}{d^{2017}}}\)(2)

Từ (1) và (2)

Ta suy ra

\(\frac{a^{2017}+b^{2017}}{c^{2017}+d^{2017}}=\frac{\left(a-b\right)^{2017}}{\left(c-d\right)^{2017}}\)

29 tháng 10 2018

Đặt \(\frac{a}{b}=\frac{c}{d}=k\) ,ta có:

\(a=bk,c=dk\)

\(\Rightarrow\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\frac{\left[b.\left(k+1\right)\right]^2}{\left[d.\left(k+1\right)\right]^2}=\frac{b^2.\left(k+1\right)^2}{d^2.\left(k+1\right)^2}=\frac{b^2}{d^2}\)(1)

      \(\frac{ab}{cd}=\frac{bkb}{dkd}=\frac{b^2}{d^2}\)(2)

Từ (1) và (2) suy ra:

\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{ab}{cd}\)(đpcm)

29 tháng 10 2018

Đặt \({a}/{b}={c}/{d}=k \) => a =bk ; c =dk

Thay vào vế trái là \({ab}/{cd}\)  và vế phải là \({(a+b)^2}/{(c+d)^2}\) sẽ đc 2 vế bằng nhau 

=> điều phải CM

25 tháng 10 2015

mình làm rồi nhưng ngại trả lời ghê