K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2019

Áp dụng tính chất dãy tỉ số =nhau :

a/b=b/c=c/a=(a+b+c)/(a+b+c)=1

=> a=b=c =2012

1 tháng 12 2019

Áp dụng tính chất của dãy tỉ số bằng nhau ta đc:

           \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=\frac{1}{1}\)

=> a=b

     b=c

     => a=b=c

mà a= 2012

=>b=c=2012

12 tháng 2 2017

\(\frac{a}{b+c+d}=\frac{b}{c+d+a}=\frac{c}{a+b+d}=\frac{d}{a+b+c}\)

\(\Rightarrow\frac{a}{a+b+d}+1=\frac{b}{c+d+a}+1=\frac{c}{a+b+d}+1=\frac{d}{a+b+c}+1\)

\(=\frac{a}{a+b+c+d}=\frac{b}{a+b+c+d}=\frac{c}{a+b+c+d}=\frac{d}{a+b+c+d}\)

\(\Rightarrow a=b=c=d\) Thay vào A ta được :

\(A=\frac{a+a}{a+a}+\frac{a+a}{a+a}+\frac{a+a}{a+a}+\frac{a+a}{a+a}=1+1+1+1=4\)

13 tháng 7 2018

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

\(\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Rightarrow}a=b=c=2012\)

13 tháng 7 2018

Theo t/c dãy tỉ số bằng nhau :

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

\(\Rightarrow a=b\)

\(b=c\)

\(c=a\)

\(\Rightarrow a=b=c\).Mà \(a=2012\)

\(\Rightarrow a=b=c=2012\)

19 tháng 10 2017

Áp dụng tính chất dãy tỉ số bằng nhau: 
\(\frac{a}{b}=\frac{b-2015c}{c}=\frac{2016c}{a}\)\(=\frac{a+b-2015c+2016c}{b+c+a}=\frac{a+b+c}{a+b+c}=1\).
Suy ra \(\frac{a}{b}=1\Leftrightarrow a=b\).

19 tháng 10 2017

thanks bui thi van nha

18 tháng 10 2017

Áp dụng tính chất của dãy tỉ số bằng nhau có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

=> a/b = 1 => a = b

b/c = 1 => b = c

=> a=b=c

=> \(M=\frac{a^{2012}.b^3.c}{b^{2016}}=\frac{b^{2012}.b^3.b}{b^{2016}}=\frac{b^{2016}}{b^{2016}}=1\)

6 tháng 3 2019

Đặt: \(\frac{a}{2013}=\frac{b}{2012}=\frac{c}{2011}=k\Rightarrow\hept{\begin{cases}a=2013k\\b=2012k\\c=2011k\end{cases}}\)

\(P=\frac{\left(a-c\right)^4}{\left(a-b\right)^2\left(b-c\right)^2}=\frac{\left(2013k-2011k\right)^4}{\left(2013k-2012k\right)^2\left(2012k-2011k\right)^2}=\frac{16k^4}{k^4}=16\)

27 tháng 6 2016

Áp dụng t/c DTSBN có:

(b+c+d)/a=(c+d+a)/a=(d+a+b)/c=(a+b+c)/d=(b+c+d+c+d+a+d+a+b+a+b+c)/(a+b+c+d)

                                                               =[3.(a+b+c+d)]/(a+b+c) =3(1)

Lại có: (b+c+d)/a=(c+d+a)/a=(d+a+b)/c=(a+b+c)/d=k(2)

Từ (1) và (2) có: k=3

13 tháng 12 2017

Ta có:

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)

\(\Rightarrow\frac{a+b}{c}+1=\frac{b+c}{a}-1=\frac{c+a}{b}-1\)

\(\Rightarrow\frac{a+b-2c}{c}=\frac{b+c}{a}=\frac{c+a}{b}\)

\(\Rightarrow\frac{a}{c}+\frac{b}{c}-2=\frac{c}{b}+\frac{a}{b}=\frac{b}{a}+\frac{c}{a}\)

14 tháng 12 2017

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{a+b-c+b+c-a+c+a-b}{c+a+b}=\frac{a+b+c}{a+b+c}=1\)

=> a+b-c/c = 1 => a+b-c = c => a+b = 2c

b+c-a/a = 1 => b+c-a = a => b+c = 2a

c+a-b/b = 1 => c+a-b = b => c+a = 2b

=> P = \(\left(1+\frac{b}{a}\right)\cdot\left(1+\frac{c}{b}\right)\cdot\left(1+\frac{a}{c}\right)=\frac{a+b}{a}\cdot\frac{b+c}{b}\cdot\frac{c+a}{c}=\frac{2c}{a}\cdot\frac{2a}{b}\cdot\frac{2b}{c}=\frac{2c.2a.2b}{abc}=\frac{8abc}{abc}=8\)

17 tháng 10 2016

Giup với nào vui