Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Ta có: 200920=(20092)10=403608110 ; 2009200910=2009200910
Vì 403608110< 2009200910 => 200920< 2009200910
Bài 1:
Ta có:\(2009^{20}\)=\(2009^{10}\).\(2009^{10}\)
\(20092009^{10}\)=(\(\left(2009.10001\right)^{10}=2009^{10}.10001^{10}\)
Vì 2009<10001\(\Rightarrow2009^{20}< 20092009^{10}\)
Bài 2 )
\(a\left(y+z\right)=b\left(x+z\right)=c\left(x+y\right)\)
\(\Leftrightarrow\frac{a\left(y+z\right)}{abc}=\frac{b\left(x+z\right)}{abc}=\frac{c\left(x+y\right)}{abc}\)
\(\Leftrightarrow\frac{y+z}{bc}=\frac{x+z}{ac}=\frac{x+y}{ab}\)
\(\Leftrightarrow\frac{bc}{y+z}=\frac{ac}{x+z}=\frac{ab}{x+y}\)
Đặt \(\frac{bc}{y+z}=\frac{ac}{x+z}=\frac{ab}{x+y}=k\)
\(\Rightarrow\left\{\begin{matrix}bc=k\left(y+z\right)=ky+kz\\ac=k\left(x+z\right)=kx+kz\\ab=k\left(x+y\right)=kx+ky\end{matrix}\right.\) (1)
Gỉa sử điều cần chứng minh là đúng ta có
\(\frac{y-z}{a\left(b-c\right)}=\frac{z-x}{b\left(c-a\right)}=\frac{x-y}{c\left(a-b\right)}\)
\(\Leftrightarrow\frac{y-z}{ab-ac}=\frac{z-x}{bc-ab}=\frac{x-y}{ac-bc}\)
Thế (1) vào biểu thức
\(\frac{y-z}{kx+ky-\left(kx+kz\right)}=\frac{z-x}{ky+kz-\left(kx+ky\right)}=\frac{x-y}{kx+kz-\left(ky+kz\right)}\)
\(\Leftrightarrow\frac{y-z}{ky-kz}=\frac{z-x}{kz-kx}=\frac{x-y}{kx-ky}\)
\(\Leftrightarrow\frac{y-z}{k\left(y-z\right)}=\frac{z-x}{k\left(z-x\right)}=\frac{x-y}{k\left(x-y\right)}\)
\(\Leftrightarrow\frac{1}{k}=\frac{1}{k}=\frac{1}{k}\) ( điều này luôn luôn đúng )
\(\Rightarrow\) ĐPCM
\(a.\)\(\frac{a}{b}=\frac{c}{d}\)=> \(ad=bc\)=> \(ad+ab=bc+ab\)=> a x ( b + d) = b x ( a + c )
=> \(\frac{a}{b}=\frac{a+c}{b+d}\left(đpcm\right)\)
\(b.\)\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)=> \(\frac{a+b}{c+a}=\frac{a-b}{c-a}\)( Áp dụng tính chất dãy tỉ số bằng nhau )
=>\(\frac{a}{b}=\frac{c}{a}\)=> \(a^2=bc\)( đpcm)
Ta có : \(\frac{a+b}{2008}=\frac{b+c}{2009}=\frac{c+a}{2010}=\frac{a+b-\left(b+c\right)}{2008-2009}=\frac{b+c-\left(c+a\right)}{2009-2010}=\frac{c+a-\left(a+b\right)}{2010-2008}=\frac{a-c}{-1}=\frac{b-a}{-1}=\frac{c-b}{2}\)
Đặt \(\frac{a-c}{-1}=\frac{b-a}{-1}=\frac{c-b}{2}=k\Rightarrow a-c=-k;b-a=-k;c-b=2k\)
Ta lại có : \(4\left(a-c\right)\left(b-a\right)=\left(c-b\right)^2\)\(\Rightarrow-4k\times\left(-k\right)=\left(2k\right)^2\)\(\Rightarrow4k^2=4k^2\)
Vế trái đúng bằng vế phải \(\Rightarrow\)\(4\left(a-c\right)\left(b-a\right)=\left(c-b\right)^2\)
Đặt \(\frac{a}{2008}=\frac{b}{2009}=\frac{c}{2010}=k\)
suy ra: \(a=2008k;\) \(b=2009k;\)\(c=2010k\)
Khi đó ta có: \(4\left(a-b\right)\left(b-c\right)\)
\(=4\left(2008k-2009k\right)\left(2009k-2010k\right)\)
\(=4k^2\)
\(\left(c-a\right)^2=\left(2010k-2008k\right)^2=4k^2\)
suy ra: \(4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\) (đpcm)
p/s: tham khảo,
Ta có :
\(B=\frac{2008}{1}+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{2007}+\frac{1}{2008}\)
\(B=1+\left(1+\frac{2007}{2}\right)+\left(1+\frac{2006}{3}\right)+...+\left(1+\frac{2}{2007}\right)+\left(1+\frac{1}{2008}\right)\)
\(B=\frac{2009}{2009}+\frac{2009}{2}+\frac{2009}{3}+...+\frac{2009}{2007}+\frac{2009}{2008}\)
\(B=2009\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}\right)\)
\(\Rightarrow\)\(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}}{2009\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}\right)}=\frac{1}{2009}\)
Vậy \(\frac{A}{B}=\frac{1}{2009}\)
\(B=\frac{2008}{1}+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{1007}+\frac{1}{2008}\)
\(B=\frac{2008}{1}+1+\frac{2007}{2}+1+\frac{2006}{3}+1+....+\frac{2}{2007}+1+\frac{1}{2008}+1-2008\)
\(B=\frac{2009}{1}+\frac{2009}{2}+\frac{2009}{3}+.....+\frac{2009}{2007}+\frac{2009}{2008}-\frac{2009.2008}{2009}\)
\(B=2009\cdot\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2007}+\frac{1}{2008}-\frac{2008}{2009}\right)\)
Từ đó suy ra \(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}}{2009\cdot\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2007}+\frac{1}{1008}+\frac{2008}{2009}\right)}\)
\(=\frac{\frac{1}{2009}}{2009\cdot\left(1+\frac{2008}{2009}\right)}\)
Bí òi
Theo tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{a+b}{2007}=\frac{b+c}{2008}=\frac{a+b-\left(b+c\right)}{2007-2008}=\frac{a-c}{-1}\)(1)
\(\frac{b+c}{2008}=\frac{c+a}{2009}=\frac{b+c-\left(c+a\right)}{2008-2009}=\frac{b-a}{-1}\)(2)
\(\frac{c+a}{2009}=\frac{a+b}{2007}=\frac{c+a-\left(a+b\right)}{2009-2007}=\frac{c-b}{2}\)(3)
Từ (1), (2), (3) =>\(\frac{a-c}{-1}=\frac{b-a}{-1}=\frac{c-b}{2}\)
=> \(a-c=b-a=\frac{c-b}{2}\)
=>\(c-b=2\left(a-c\right)\)
Có: \(4\left(a-c\right)\left(b-a\right)=4\left(a-c\right)\left(a-c\right)\)
(do \(a-c=b-a\)) (*)
Có \( \left(c-b\right)^2=2\left(a-c\right).2\left(a-c\right)\)
=\(4.\left(a-c\right)\left(a-c\right)\) (**)
Từ (*) và (**) =>\(4.\left(a-c\right)\left(b-a\right)=\left(c-b\right)^2\)(đpcm)