Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đễ dàng chưng minh được
\(f\left(1-x\right)=1-f\left(x\right)\)
\(\Rightarrow f\left(1-x\right)+f\left(x\right)=1\)
\(\Rightarrow A=\left[f\left(\frac{1}{2012}\right)+f\left(\frac{2011}{2012}\right)\right]+\left[f\left(\frac{2}{2012}\right)+f\left(\frac{2010}{2012}\right)\right]+...+\left[f\left(\frac{1005}{2012}\right)+f\left(\frac{1007}{2012}\right)\right]+f\left(\frac{1006}{2012}\right)\)
\(=1005+f\left(\frac{1006}{2012}\right)\)
Làm nôt
Bạn kiểm tra lại đề, \(f\left(x\right)=\dfrac{x^3}{1-3x-3x^2}\) hay \(f\left(x\right)=\dfrac{x^3}{1-3x+3x^2}\)
Ta có:\(f\left(x\right)-1=\left(x-1\right)^3\)
\(=>A+\frac{1}{2}=\left(\frac{1}{112}-1\right)^3+\left(\frac{2}{112}-1\right)^3+\left(\frac{3}{112}-1\right)^3+...\left(\frac{111}{112}-1\right)^3\)
\(A+\frac{1}{2}=-\frac{1^3+2^3+3^3+...+111^3}{112^3}=-\frac{\frac{111^2\left(111+1\right)^2}{4}}{112^3}=-\frac{111^2}{4\cdot112}=-\frac{12321}{448}\)
\(A=-\frac{12321}{448}-\frac{1}{2}=-\frac{12545}{448}\)
mk ko bít làm bn ak?
nếu muốn bn đợi mk 2 năm nữa
123456
Xét \(f\left(x\right)+f\left(1-x\right)=\frac{x^3}{1-3x+3x^2}+\frac{\left(1-x\right)^3}{1-3\left(1-x\right)+3\left(1-x\right)^2}\)
\(=\frac{x^3}{1-3x+3x^2}+\frac{1-3x+3x^2-x^3}{1-3+3x+3-6x+3x^2}\)
\(=\frac{x^3}{1-3x+3x^2}+\frac{1-3x+3x^2-x^3}{1-3x+3x^2}\)
\(=\frac{1-3x+3x^2}{1-3x+3x^2}=1\)
Thay vào ta tính được:
\(A=\left[f\left(\frac{1}{2020}\right)+f\left(\frac{2019}{2020}\right)\right]+...+\left[f\left(\frac{1009}{2020}\right)+f\left(\frac{1011}{2020}\right)\right]+f\left(\frac{1010}{2020}\right)\)
\(A=1+...+1+f\left(\frac{1010}{2020}\right)\) (với 1009 số 1)
\(A=1009+f\left(\frac{1}{2}\right)=1009+\frac{\left(\frac{1}{2}\right)^3}{1-3\cdot\frac{1}{2}+3\cdot\left(\frac{1}{2}\right)^2}\)
\(A=1009+\frac{1}{2}=\frac{2019}{2}\)
Vậy \(A=\frac{2019}{2}\)
\(f\left(x\right)+f\left(1-x\right)=\frac{x^3}{1-3x+3x^2}+\frac{\left(1-x\right)^3}{1-3\left(1-x\right)+3\left(1-x\right)^2}\)
\(=\frac{x^3}{1-3x+3x^2}+\frac{1-3x+3x^2-x^3}{1-3x+3x^2}=\frac{1-3x+3x^2}{1-3x+3x^2}=1\)
Ta có \(f\left(x\right)+f\left(1-x\right)=1\) khi đó
\(A=\left[f\left(\frac{1}{2012}\right)+f\left(\frac{2011}{2012}\right)\right]+...+\left[f\left(\frac{1005}{2012}\right)+f\left(\frac{1007}{2012}\right)\right]+f\left(\frac{1006}{2012}\right)\)
\(=1+1+...+1+f\left(\frac{1}{2}\right)=1005+\frac{\left(\frac{1}{2}\right)^3}{1-3.\frac{1}{2}+3.\left(\frac{1}{2}\right)^2}=1005+\frac{1}{2}=\frac{2011}{2}\)
Ta có: \(F\left(x\right)=\frac{x^3}{1-3x+3x^2}\)
\(\Leftrightarrow F\left(1-x\right)=1-\frac{x^3}{1-3x+3x^2}\)
\(=\frac{1-3x+3x^2-x^3}{1-3x+3x^2}\)
\(=\frac{\left(1-x\right)^3}{1-3x+3x^2}\)
Ta có: \(F\left(x\right)+F\left(1-x\right)\)
\(=\frac{x^3}{1-3x+3x^2}+\frac{\left(1-x\right)^3}{1-3x+3x^2}\)
\(=\frac{1-3x+3x^2}{1-3x+3x^2}=1\)
\(\Leftrightarrow F\left(\frac{1}{2012}\right)+F\left(\frac{2011}{2012}\right)=1\)
...
\(F\left(\frac{1005}{2012}\right)+F\left(\frac{1007}{2012}\right)=1\)
Do đó: \(A=F\left(\frac{1}{2012}\right)+F\left(\frac{2}{2012}\right)+...+F\left(\frac{2010}{2012}\right)+F\left(\frac{2011}{2012}\right)\)
\(=\left[F\left(\frac{1}{2012}\right)+F\left(\frac{2011}{2012}\right)\right]+\left[F\left(\frac{2}{2012}\right)+F\left(\frac{2010}{2012}\right)\right]+...+F\left(\frac{1006}{2012}\right)\)
\(=1+1+...+F\left(\frac{1}{2}\right)\)
\(=1005+\left[\left(\frac{1}{2}\right)^3:\left(1-3\cdot\frac{1}{2}+3\cdot\frac{1}{4}\right)\right]\)
\(=1005+\left[\frac{1}{8}:\left(1-\frac{3}{2}+\frac{3}{4}\right)\right]\)
\(=1005+\left(\frac{1}{8}:\frac{1}{4}\right)\)
\(=1005+\frac{1}{2}=\frac{2011}{2}\)
Ta xét : \(f\left(x\right)+f\left(1-x\right)=\frac{x^3}{1-3x+3x^2}+\frac{\left(1-x\right)^3}{1-3\left(1-x\right)+3\left(1-x\right)^2}\)
\(=\frac{x^3}{1-3x+3x^2}+\frac{\left(1-x\right)^3}{3x^2-3x+1}=\frac{\left(x+1-x\right)\left(x^2+x^2-2x+1+x^2-x\right)}{3x^2-3x+1}=\frac{3x^2-3x+1}{3x^2-3x+1}=1\)
Áp dụng ta có :
\(A=\left[f\left(\frac{1}{2012}\right)+f\left(\frac{2011}{2012}\right)\right]+\left[f\left(\frac{2}{2012}\right)+f\left(\frac{2010}{2012}\right)\right]+...+\left[f\left(\frac{1006}{2012}\right)+f\left(\frac{1006}{2012}\right)\right]\)
\(=1+1+...+1\)(Có tất cả 1006 số 1)
\(=1006\)
sai rồi bạn ơi