Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2^2< 2.3\Rightarrow\dfrac{1}{2^2}>\dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{3}\)
Tương tự: \(\dfrac{1}{3^2}>\dfrac{1}{3}-\dfrac{1}{4}\) ; \(\dfrac{1}{4^2}>\dfrac{1}{4}-\dfrac{1}{5}\) ; ....; \(\dfrac{1}{100^2}>\dfrac{1}{100}-\dfrac{1}{101}\)
Do đó:
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{100}-\dfrac{1}{101}\)
\(\Leftrightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}>\dfrac{1}{2}-\dfrac{1}{101}\)
\(\Leftrightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}>\dfrac{99}{202}\)
a)
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{30^2}\\ < \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{29.30}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{29}-\dfrac{1}{30}\\ =1-\dfrac{1}{30}=\dfrac{29}{30}< 1\left(dpcm\right)\)
b)
\(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}+...+\dfrac{1}{99}+\dfrac{1}{100}=\dfrac{1}{10}+\left(\dfrac{1}{11}+\dfrac{1}{12}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)\\ >\dfrac{1}{10}+\dfrac{1}{100}+\dfrac{1}{100}+...+\dfrac{1}{100}=\dfrac{1}{10}+\dfrac{90}{100}\\ =\dfrac{110}{100}>1\left(đpcm\right).\)
c)
\(\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+...+\dfrac{1}{17}\\ =\left(\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{9}\right)+\left(\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{17}\right)\\ < \dfrac{1}{5}.5+\dfrac{1}{8}.8=1+1=2\left(đpcm\right)\)
d) tương tự câu 1
\(A=\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{99^2}+\dfrac{1}{100^2}\)
\(=1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{99^2}+\dfrac{1}{100^2}\)
\(\Rightarrow A< 1.\left(\dfrac{1}{2.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{98.99}+\dfrac{1}{99.100}\right)\)
\(\Rightarrow A< 1+\left(\dfrac{1}{4}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(\Rightarrow A< 1+\left(\dfrac{1}{4}+\dfrac{1}{2}-\dfrac{1}{100}\right)\)
Mà ta thấy \(\dfrac{1}{4}+\dfrac{1}{2}-\dfrac{1}{100}< \dfrac{1}{4}+\dfrac{1}{2}=\dfrac{3}{4}\)
\(\Rightarrow A< 1+\dfrac{3}{4}=\dfrac{7}{4}\)
b\()\)
1/2^2 + 1/3^2 +... + 1/100^2 < 1/4 + 1/2.3 + 1/3.4 +... + 1/99.100
1/2^2 + 1/3^2 +... + 1/100^2 < 1/4 + 1/2 - 1/3 + 1/3 -1/4 +... + 1/99 + 1/100
1/2^2 + 1/3^2 +... + 1/100^2 < 1/4 + 1/2 - 1/100
1/2^2 + 1/3^2 +... + 1/100^2 < 3/4 - 1/100 < 3/4
Tương tự như vậy với câu a\()\)
1/2^2 + 1/3^2 +... + 1/100^2 < 1/4 + 1/2.3 + 1/3.4 +... + 1/99.100
1/2^2 + 1/3^2 +... + 1/100^2 < 1/4 + 1/2 - 1/3 + 1/3 -1/4 +... + 1/99 + 1/100
1/2^2 + 1/3^2 +... + 1/100^2 < 1/4 + 1/2 - 1/100
1/2^2 + 1/3^2 +... + 1/100^2 < 3/4 - 1/100 < 1/2
Ta có :
\(\dfrac{200-\left(3+\dfrac{2}{3}+\dfrac{3}{4}+\dfrac{2}{5}+............+\dfrac{2}{100}\right)}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+.................+\dfrac{99}{100}}\)
\(=\dfrac{200-2-\left(\dfrac{2}{2}+\dfrac{2}{3}+\dfrac{2}{4}+.............+\dfrac{2}{100}\right)}{1-\dfrac{1}{2}+1-\dfrac{1}{3}+............+1-\dfrac{1}{100}}\)
\(=\dfrac{198-\left(\dfrac{2}{2}+\dfrac{2}{3}+...........+\dfrac{2}{100}\right)}{\left(1+1+.........+1\right)-\left(\dfrac{1}{2}+\dfrac{1}{3}+........+\dfrac{1}{100}\right)}\)
\(=\dfrac{2.\left[99-\left(\dfrac{1}{2}+\dfrac{1}{3}+..........+\dfrac{1}{100}\right)\right]}{99-\left(\dfrac{1}{2}+\dfrac{1}{3}+.........+\dfrac{1}{100}\right)}\)
\(=2\)
Vậy \(\dfrac{200-\left(3+\dfrac{2}{3}+\dfrac{2}{4}+..........+\dfrac{2}{100}\right)}{\dfrac{1}{2}+\dfrac{2}{3}+........+\dfrac{99}{100}}=2\rightarrowđpcm\)
sửa đề : \(F=\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}\)
\(\dfrac{1}{1^2}< \dfrac{1}{1.2};\dfrac{1}{2^2}< \dfrac{1}{2.3};...;\dfrac{1}{100^2}< \dfrac{1}{99.100}\)
Cộng vế với vế
\(\dfrac{1}{1^2}+...+\dfrac{1}{100^2}< \dfrac{1}{1.2}+...+\dfrac{1}{99.100}=1-\dfrac{1}{2}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}=\dfrac{99}{100}\)< 7/4
Vậy ta có đpcm