Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải
Ta có : \(\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};\dfrac{1}{4^2}< \dfrac{1}{3.4};...;\dfrac{1}{20^2}< \dfrac{1}{19.20}\)
\(\Rightarrow\)D < \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{19.20}\)
Nhận xét: \(\dfrac{1}{1.2}=1-\dfrac{1}{2};\dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{3};\dfrac{1}{3.4}=\dfrac{1}{3}-\dfrac{1}{4};...;\dfrac{1}{19.20}=\dfrac{1}{19}-\dfrac{1}{20}\)
\(\Rightarrow\) D< 1- \(\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{19}-\dfrac{1}{20}\)
D< 1 - \(\dfrac{1}{20}\)
D< \(\dfrac{19}{20}\)<1
\(\Rightarrow\)D< 1
Vậy D=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{5^2}\)<1
A=\(\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}\)
A=\(\dfrac{1}{2^2.1}+\dfrac{1}{2^2.2^2}+\dfrac{1}{3^2.2^2}+...+\dfrac{1}{50^2.2^2}\)
A=\(\dfrac{1}{2^2}\left(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\right)\)
\(A=\dfrac{1}{2^2}\left(1+\dfrac{1}{2.2}+\dfrac{1}{3.3}+...+\dfrac{1}{50.50}\right)\)
Ta có :
\(\dfrac{1}{2.2}< \dfrac{1}{1.2};\dfrac{1}{3.3}< \dfrac{1}{2.3};\dfrac{1}{4.4}< \dfrac{1}{3.4};...;\dfrac{1}{50.50}< \dfrac{1}{49.50}\)
\(\Rightarrow A< \dfrac{1}{2^2}\left(1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\right)\)Nhận xét :
\(\dfrac{1}{1.2}< 1-\dfrac{1}{2};\dfrac{1}{2.3}< \dfrac{1}{2}-\dfrac{1}{3};...;\dfrac{1}{49.50}< \dfrac{1}{49}-\dfrac{1}{50}\)
\(\Rightarrow A< \dfrac{1}{2^2}\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)\)
A<\(\dfrac{1}{2^2}\left(1-\dfrac{1}{50}\right)\)
A<\(\dfrac{1}{4}.\dfrac{49}{50}\)<1
A<\(\dfrac{49}{200}< \dfrac{1}{2}\)
\(\Rightarrow A< \dfrac{1}{2}\)
A = \(\dfrac{\left(\dfrac{47}{15}+\dfrac{3}{15}\right):\dfrac{5}{2}}{\left(\dfrac{38}{7}-\dfrac{9}{4}\right):\dfrac{267}{56}}=\dfrac{\dfrac{10}{3}.\dfrac{2}{5}}{\dfrac{89}{28}.\dfrac{56}{267}}=2\)
B= \(\dfrac{1,2:\left(\dfrac{6}{5}.\dfrac{5}{4}\right)}{0,32+\dfrac{2}{25}}=\dfrac{\dfrac{6}{5}:\dfrac{3}{2}}{\dfrac{8}{25}+\dfrac{2}{25}}=\dfrac{4}{\dfrac{5}{\dfrac{2}{5}}}=2\)
=> A = B
Ta có:
A=\(1+\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{100.100}\)
A<\(1+\dfrac{1}{2.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
A<\(1+\dfrac{1}{4}+\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
A<\(\dfrac{5}{4}\)+\(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{99}-\dfrac{1}{100}\)
A<\(\dfrac{5}{4}+\dfrac{1}{2}-\dfrac{1}{100}\)
A<\(\dfrac{5}{4}+\dfrac{49}{100}\)
A<\(\dfrac{174}{100}\)<\(\dfrac{7}{4}\)
=>A<\(\dfrac{7}{4}\)
Tick giùm mink nha :D
\(B< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{7.8}\)
\(B< 1-\dfrac{1}{8}=\dfrac{7}{8}< 1\)
mink nhanh nhất đó bạn,
ta có :
\(\dfrac{1}{2^2}< \dfrac{1}{1\times2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2\times3}\)
\(\dfrac{1}{4^2}< \dfrac{1}{3\times4}\)
. . . . . . .
\(\dfrac{1}{8^2}< \dfrac{1}{7\times8}\)
_________________________________
\(\Rightarrow\)\(B< \)\(\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{7.8}\right)\)
\(\Rightarrow B< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+....+\dfrac{1}{7}-\dfrac{1}{8}\)
\(\Rightarrow B< 1-\dfrac{1}{8}\)
\(\Rightarrow B< 1\)
\(\Rightarrowđpcm\)
S=\(\dfrac{1}{5.5}+\dfrac{1}{6.6}+\dfrac{1}{7.7}+...+\dfrac{1}{2018.2018}\)
Ta có: \(\dfrac{1}{5.5}< \dfrac{1}{4.5};\dfrac{1}{6.6}< \dfrac{1}{5.6};\dfrac{1}{7.7}< \dfrac{1}{6.7};...;\dfrac{1}{2018.2018}< \dfrac{1}{2017.2018}\)
\(\Rightarrow\) S<\(\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{2017.2018}\)
S<\(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{2017}-\dfrac{1}{2018}\)
S< \(\dfrac{1}{4}-\dfrac{1}{2018}< \dfrac{1}{4}\)
\(\Rightarrow\)S<\(\dfrac{1}{4}\)
Học tốt nha
Đặt \(B=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2007\cdot2008}\)
Ta có:
\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2008^2}< \)\(B=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{2007\cdot2008}\left(1\right)\)
Lại có: \(B=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2007\cdot2008}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2007}-\dfrac{1}{2008}\)
\(=1-\dfrac{1}{2008}< 1\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\) ta có \(A< B< 1\Rightarrow A< 1\)
A=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+....+\dfrac{1}{2008^2}\)
A<\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2007.2008}\)
A<\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2007}-\dfrac{1}{2008}\)
A<\(1-\dfrac{1}{2008}\)
A<\(\dfrac{2007}{2008}< 1\)
=> A<1
Vậy A<1
\(A=\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{99^2}+\dfrac{1}{100^2}\)
\(=1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{99^2}+\dfrac{1}{100^2}\)
\(\Rightarrow A< 1.\left(\dfrac{1}{2.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{98.99}+\dfrac{1}{99.100}\right)\)
\(\Rightarrow A< 1+\left(\dfrac{1}{4}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(\Rightarrow A< 1+\left(\dfrac{1}{4}+\dfrac{1}{2}-\dfrac{1}{100}\right)\)
Mà ta thấy \(\dfrac{1}{4}+\dfrac{1}{2}-\dfrac{1}{100}< \dfrac{1}{4}+\dfrac{1}{2}=\dfrac{3}{4}\)
\(\Rightarrow A< 1+\dfrac{3}{4}=\dfrac{7}{4}\)