Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tứ giác AEMO có:
\(\widehat{OME}=90^0,\widehat{OAE}=90^0\Leftrightarrow\widehat{OME}+\widehat{OAE}=180^0\)
mà 2 góc này ở vị trí đối nhau nên tứ giác AEOM nt đường tròn đk EO
b, Theo tính chất tiếp tuyến ta thấy:
EO là tia phân giác của MOA
OF là tia phân giác của MOB
mà MOB và MOA là hai góc kề bù nên EOF =90
c,ta thấy
OMEA nt đường tròn đk EO nên MAB=FEO(cùng nhìn cạnh MO)
xét \(\Delta ABM\)và \(\Delta OEF\)
\(\widehat{MAB}=\widehat{OEF}\left(cmt\right)\)
\(\widehat{AMB}=\widehat{EOF}\left(=90^0\right)\)
\(\Rightarrow\Delta ABM\sim\Delta EFO\)\(\Rightarrow dpcm\)
1: Xét tứ giác AEHF có \(\widehat{AEH}+\widehat{AFH}=180^0\)
nên AEHF là tứ giác nội tiếp
2: Xét ΔCDA vuông tại D và ΔCEB vuông tại E có
\(\widehat{DCA}\) chung
Do đó: ΔCDA\(\sim\)ΔCEB
Suy ra: CD/CE=CA/CB
hay \(CD\cdot CB=CA\cdot CE\)
a, Gọi \(I\left(x;y\right)\) là tâm đường tròn ngoại tiếp \(\Delta ABC\)
\(\Rightarrow\left\{{}\begin{matrix}IA=IB\\IA=IC\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}IA^2=IB^2\\IA^2=IC^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(-3-x\right)^2+\left(6-y\right)^2=\left(1-x\right)^2+\left(-2-y\right)^2\\\left(-3-x\right)^2+\left(6-y\right)^2=\left(6-x\right)^2+\left(3-y\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2y=-5\\3x-y=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\)