Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho đường tròn tâm bán kính . Điểm thuộc đoạn thẳng ( khác và ). Đường thẳng vuông góc với tại cắt đường tròn tại hai điểm và . Tiếp tuyến tại của đường tròn cắt đường thẳng tại . Tiếp tuyến tại của đường tròn cắt đường thẳng tại . Gọi là giao điểm của hai đường thẳng và .
Chứng minh các tứ giác và là tứ giác nội tiếp.
xet tu giac AFDO co: goc FAO=FDO=90(gt)
=> tu giac AFDO noi tiep ( tong 2 goc doi dien bang 180)
vi OA vuong goc voi DK tai C (gt) va D,K thuoc (O)
=> OC la duong trung truc cua DK
=> tam giac ODK can tai O
=> goc ODK = OKD (1)
Mat khac,
va ta thay DC vuong goc voi OA
nen H la truc tam cua tam giac OAD
=>AH vuong goc voi OD=> AH song song voi ED
=> goc HAO=DEO (dong vi) (2)
Ta thay goc DEO= 90- goc DOE (tong 3 goc trong tam giac DOE)
va goc ODK=90- goc DOE (tong 3 goc trong tam giac DOK)
=>goc ODK=DEO (3)
Tu (1);(2);(3)=> goc OAH=OKH
=>tu giac AHOK noi tiep
b, ta có: \(MN\perp AO\Leftrightarrow\stackrel\frown{AM}=\stackrel\frown{AN}\Leftrightarrow\widehat{ANM}=\widehat{AMN^{\left(1\right)}}\)
\(\widehat{FMA}=\widehat{ANM}\left(=\dfrac{1}{2}sđ\stackrel\frown{AM}\right)^{\left(2\right)}\)
Từ \(\left(1\right)va\left(2\right)\) ta có \(\widehat{FMA}=\widehat{AMN}\)
Suy ra MA là tia phân giác của góc FMN
a) Xét tứ giác AFMO có
\(\widehat{FAO}\) và \(\widehat{FMO}\) là hai góc đối
\(\widehat{FAO}+\widehat{FMO}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: AFMO là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
giúp em câu b với c