K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có

SA là tiếp tuyến

nên SA vuông góc với OA

hay ΔOAS vuông tại A

b: Xét ΔOAS và ΔOBS có

OA=OB

\(\widehat{SOA}=\widehat{SOB}\)

OS chung

Do đó: ΔOAS=ΔOBS

Suy ra: \(\widehat{OAS}=\widehat{OBS}=90^0\)

hay SB là tiếp tuyến của (O)

a: Xét ΔOAS vuông tại A có 

\(OS^2=OA^2+AS^2\)

hay AS=4(cm)

Xét ΔOAS vuông tại A có 

\(\sin SOA=\dfrac{AS}{OS}=\dfrac{4}{5}\)

hay \(\widehat{SOA}=53^0\)

b: Xét ΔOAB có OA=OB

nên ΔOAB cân tại O

mà OI là đường cao

nên OI là đường phân giác

hay OS là tia phân giác của góc AOB

Xét ΔAOS và ΔBOS có

OA=OB

\(\widehat{AOS}=\widehat{BOS}\)

OS chung

Do đó: ΔAOS=ΔBOS
Suy ra: \(\widehat{OAS}=\widehat{OBS}=90^0\)

hay SB là tiếp tuyến của (O)

30 tháng 12 2021

a: BC=4cm

a: SA là tiếp tuyến của (O) với A là tiếp điểm

=>SA\(\perp\)AO tại A

=>ΔSAO vuông tại A

ΔSAO vuông tại A

=>\(AO^2+AS^2=OS^2\)

=>\(AS^2=5^2-3^2=16\)

=>SA=4(cm)

b: Xét ΔAOS vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AH\cdot OS=AO\cdot AS\\OH\cdot OS=OA^2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}AH=\dfrac{3\cdot4}{5}=2,4\left(cm\right)\\OH=\dfrac{3^2}{5}=1,8\left(cm\right)\end{matrix}\right.\)

Xét ΔSAO vuông tại A có \(sinASO=\dfrac{OA}{OS}=\dfrac{3}{5}\)

nên \(\widehat{ASO}\simeq37^0\)

c: Xét (O) có

SA,SB là tiếp tuyến

Do đó: SA=SB

mà OA=OB

nên OS là trung trực của AB

=>OS\(\perp\)AB

mà AH\(\perp\)OS
và AH và AB có điểm chung là A

nên A,H,B thẳng hàng

d: Gọi M là trung điểm của SD

CD\(\perp\)CA

SA\(\perp\)CA

Do đó: CD//SA

Xét hình thang ASDC có

O,M lần lượt là trung điểm của AC,DS

=>OM là đường trung bình 

=>OM//SA//DC

=>OM\(\perp\)CA

OM//SA

=>\(\widehat{MOS}=\widehat{OSA}\)

mà \(\widehat{OSA}=\widehat{MSO}\)

nên \(\widehat{MOS}=\widehat{MSO}\)

=>MO=MS

mà MS=MD

nên MO=SD/2

Xét ΔODS có

OM là đường trung tuyến

OM=SD/2

Do đó: ΔODS vuông tại O

=>O nằm trên đường tròn  tâm M, đường kính SD

Xét (M) có

OM là bán kính 

AC\(\perp\)OM tại O

Do đó: AC là tiếp tuyến của (M)

18 tháng 2 2016

Giúp mình câu C với

Giúp mình với . ( giải chi tiết và cái hình luôn) Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H làgiao điểm của BM và CN.a) Tính số đo các góc BMC và BNC.b) Chứng minh AH vuông góc BC.c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho gócMAB = 60độ . Kẻ dây MN vuông góc với AB...
Đọc tiếp

Giúp mình với . ( giải chi tiết và cái hình luôn)
Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H là
giao điểm của BM và CN.
a) Tính số đo các góc BMC và BNC.
b) Chứng minh AH vuông góc BC.
c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH
Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho góc
MAB = 60độ . Kẻ dây MN vuông góc với AB tại H.
a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM).
b) Chứng minh MN2 = 4AH.HB .
c) Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó.
d) Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F. Chứng minh ba điểm N, E, F thẳng hàng.
Bài 3, Cho đường tròn (O; R) và điểm A cách O một khoảng bằng 2R, kẻ tiếp tuyến AB tới đường
tròn (B là tiếp điểm).
a) Tính số đo các góc của tam giác OAB
b) Gọi C là điểm đối xứng với B qua OA. Chứng minh điểm C nằm trên đường tròn O và AC
là tiếp tuyến của đường tròn (O).
c) AO cắt đường tròn (O) tại G. Chứng minh G là trọng tâm tam giác ABC.
Bài 4, Từ điểm A ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a) Chứng minh OA vuông góc BC và tính tích OH.OA theo R
b) Kẻ đường kính BD của đường tròn (O). Chứng minh CD // OA.
c) Gọi E là hình chiếu của C trên BD, K là giao điểm của AD và CE. Chứng minh K là trung điểm CE.

3
9 tháng 10 2017

Hình học lớp 9

21 tháng 4 2017

Tự giải đi em