K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2018

O A B

Ta có ngay bất đẳng thức:

 \(OA-OB\le AB\le OA+OB\)

Vậy thì AB nhỏ nhất khi \(AB=OA-OB=\frac{R}{2}\). Khi đó B là giao điểm của đoạn thẳng OA  với đường tròn (O).

Vậy thì AB lớn nhất khi \(AB=OA+OB=\frac{5R}{2}\). Khi đó B là giao điểm của đường thẳng OA  với đường tròn (O), B nằm ngoài đoạn OA.

a: Phải vì góc này tạo bởi tiếp tuyến MA và day cung AB

b: Xét ΔMOA vuông tại A có cosMOA=OA/OM=1/2

=>góc MOA=60 độ

sđ cung AB=2*60=120 độ

c: Xét (O) có

MA,MB là tiếp tuyến

=>MA=MB

mà OA=OB

nên OM là trung trực của AB

=>OM vuông góc AB tại H

=>MH*MO=MA^2

Xét ΔMAC và ΔMDA có

góc MAC=góc MDA

góc AMC chung

=>ΔMAC đồng dạng với ΔMDA

=>MA/MD=MC/MA

=>MA^2=MD*MC=MH*MO

 

12 tháng 3 2023

Giúp mình giải câu e với ạ

3 tháng 2 2019

O M A B 1 2 1 2

Do MA là tiếp tuyến của (O) => MA \(\perp\)AO

Có \(cosO_1=\frac{OA}{OM}=\frac{R}{2R}=\frac{1}{2}\)

\(\Rightarrow\widehat{O_1}=60^o\)

Tương tự \(\widehat{O_2}=60^o\)

\(\Rightarrow\widehat{AOB}=\widehat{O_1}+\widehat{O_2}=60^o+60^o=120^o\)

Có: \(\widehat{AOB}+\widehat{OBM}+\widehat{BMA}+\widehat{MAO}=360^o\)

\(\Leftrightarrow120^o+90^o+\widehat{BMA}+90^o=360^o\)

\(\Leftrightarrow\widehat{BMA}=60^o\)

Vậy ...

20 tháng 11 2020

a) Tứ giác MAOB có: \(\widehat{OAM}=90^0\left(0A\perp AM\right);\widehat{OBM}=90^0\left(CB\perp BM\right)\)

=> \(\widehat{OAM}+\widehat{OBM}=180^O\)

=> AOBM nội tiếp (tổng 2 góc đối = 180)

Vì I là tâm=> I là trung điểm OM

b) Tính \(MA^2=3R^2\Rightarrow MC.MD=3R^2\)

c) CM: OM là trung trực AB

=> FA=FB

=> tam giác FAB cân tại F

Gọi H là giao điểm AB và OM

Ta có: OA=OB=AI=R => tam giác OAI đều

=> OAI =60O=> FAB=60(cùng phụ AFI)

Vậy tam giác AFB đều

d) Kẻ EK vuông góc với FB tại K. Ta có:

\(S_{B\text{EF}}=\frac{1}{2}.FB.EK\)

Mà \(EK\le BE\)( TAM giác BEK vuông tại K)

Lại có: \(BE\le OA\)(LIÊN hệ đường kính và dây cung)

=> \(S_{B\text{EF}}\le\frac{1}{2}.R\sqrt{3}.2R=R^2\sqrt{3}\)

GTLN của \(S_{B\text{EF}}=R^2\sqrt{3}\). kHI ĐÓ BE là đường kính (I)

Kẻ đường kính BG của (I). Vì B và (I) cố định nên BG cố
 định . Khi đó vị trí cắt tuyến MCD để \(S_{B\text{EF}}\)đạt GTLN là C là giao điểm của FG với đường tron (O)