K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2021

a: Xét (O) có

ΔABC nội tiếp

BC là đường kính

Do đó: ΔABC vuông tại A

a: Xét (O) có

ΔABC nội tiếp

AB là đường kính

Do đó: ΔABC vuông tại C

b: Xét ΔABC vuông tại C có CH là đường cao

nên \(AH\cdot AB=AC^2\left(1\right)\)

Xét ΔMAB vuông tại A có AC là đường cao

nên \(MC\cdot BC=AC^2\left(2\right)\)

Từ (1) và (2) suy ra \(AH\cdot AB=MC\cdot BC\)

13 tháng 12 2023

a: Xét (O) có

ΔABC nội tiếp

BC là đường kính

Do đó: ΔABC vuông tại A

Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=\left(2R\right)^2-R^2=3R^2\)

=>\(AC=R\sqrt{3}\)

b:

Ta có: AB=AO=R

OA=AD=R=DO/2

Do đó: \(AB=OA=OD=\dfrac{DO}{2}\)

Xét ΔDBO có

BA là đường trung tuyến

\(BA=\dfrac{DO}{2}\)

Do đó: ΔDBO vuông tại B

=>DB\(\perp\)BO tại B

=>DB là tiếp tuyến của (O)

10 tháng 12 2023

a: Xét (O) có

ΔABC nội tiếp

BC là đường kính

Do đó: ΔABC vuông tại A

Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=\left(2R\right)^2-R^2=3R^2\)

=>\(AC=R\sqrt{3}\)

b: Ta có: ΔOAC cân tại O

mà OE là đường trung tuyến

nên OE là phân giác của góc AOC

=>OF là phân giác của góc AOC

Xét ΔOCF và ΔOAF có

OC=OA

\(\widehat{COF}=\widehat{AOF}\)

OF chung

Do đó: ΔOCF=ΔOAF

=>\(\widehat{OAF}=\widehat{OCF}=90^0\)

=>FA là tiếp tuyến của (O)