K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: ΔOAC cân tại O

mà OB là đường cao

nên OB là phân giác của góc AOC

Xét ΔOAB và ΔOCB có

OA=OC

\(\widehat{AOB}=\widehat{COB}\)

OB chung

Do đó: ΔOAB=ΔOCB

=>\(\widehat{OAB}=\widehat{OCB}=90^0\)

=>BC là tiếp tuyến của (O)

b: Ta có: ΔABO vuông tại A

=>\(BO^2=BA^2+AO^2\)

=>\(BO^2=R^2+R^2=2R^2\)

=>\(BO=R\sqrt{2}\)

Xét ΔBOA vuông tại A có AH là đường cao

nên \(BH\cdot BO=BA^2\)

=>\(BH\cdot R\sqrt{2}=R^2\)

=>\(BH=\dfrac{R^2}{R\sqrt{2}}=\dfrac{R}{\sqrt{2}}\)

Xét ΔABO vuông tại A có AO=AB

nên ΔABO vuông cân tại A

=>\(\widehat{ABO}=\widehat{AOB}=45^0\)

Xét ΔAOI có \(cosAOI=\dfrac{OA^2+OI^2-AI^2}{2\cdot OA\cdot OI}\)

=>\(\dfrac{R^2+R^2-AI^2}{2\cdot R\cdot R}=cos45=\dfrac{\sqrt{2}}{2}\)

=>\(2R^2-AI^2=2R^2\cdot\dfrac{\sqrt{2}}{2}=R^2\cdot\sqrt{2}\)

=>\(AI^2=2R^2-R^2\cdot\sqrt{2}\)

=>\(AI^2=R^2\left(2-\sqrt{2}\right)\)

=>\(AI=R\cdot\sqrt{2-\sqrt{2}}\)

Xét ΔOHA vuông tại H có \(cosHOA=\dfrac{HO}{OA}\)

=>\(\dfrac{HO}{R}=cos45=\dfrac{\sqrt{2}}{2}\)

=>\(HO=R\cdot\dfrac{\sqrt{2}}{2}\)

OH+HI=OI

=>\(HI+\dfrac{R\sqrt{2}}{2}=R\)

=>\(HI=R-\dfrac{R\sqrt{2}}{2}=R\left(1-\dfrac{\sqrt{2}}{2}\right)=\dfrac{2-\sqrt{2}}{2}\cdot R\)

25 tháng 4 2016

o A B M C D I

a. Do I là trung điểm dây cung BC nên ta có \(\widehat{OIC}=90^0\). Xét tứ giác MOCI có \(\widehat{CMO}+\widehat{CIO} =90^0+90^0=180^0\)  nên tứ giác MOIC là tứ giác nội tiếp đường tròn đường kính CO.

b. Do D là điểm chính giữa cung AB nên \(DO \perp AB\), mà  \(CM \perp AB\)  nên \(DO \parallel CM\). Từ đó dễ thấy \(dtCMD=dtCMO\).

\(\frac{1}{2}CM.MO\le\frac{1}{2}\frac{CM^2+OM^2}{2}=\frac{1}{4}OC^2=\frac{R^2}{4}\)

Vậy diện tích tam giác MCD lớn nhất bằng \(\frac{R^2}{4}\) khi \(OM=\frac{R}{\sqrt{2}}\)

Chúc em học tốt ^^

10 tháng 12 2022

a: ΔOCD cân tại O

mà OM là đường cao

nen OM là phân giác của góc COD và I là trung điểm của CD

Xét ΔOCM và ΔODM có

OC=OD

góc COM=góc DOM

OM chung

Do đó: ΔOCM=ΔODM

=>góc ODM=90 độ

=>MD là tiếp tuyến của (O)

b: Xét ΔMCB và ΔMAC có

góc MCB=góc MAC

góc CMB chung

DO đó: ΔMCB đồng dạng với ΔMAC

=>MC/MA=MB/MC

=>MC^2=MB*MA=MI*MO

29 tháng 5 2017

a) Nối O với N. Ta có \(\widehat{OAN}\)=\(\widehat{OBN}\)=\(\widehat{ONM}\)=90° →các góc này nội tiếp chắn nửa đường tròn đường kính ON →O,A,B,N,M cùng nằm trên đường tròn đường kính ON.

b) Nối A với M. Xét tứ giác nội tiếp OANB(chứng minhnội tiếp trước)ta có \(\widehat{AMO}\)=\(\frac{1}{2}\)\(\widebat{OA}\);\(\widehat{OAB}\)=\(\frac{1}{2}\)\(\widebat{OB}\) mà 

  • \(\widebat{OA}\)=\(\widebat{OB}\)\(\widehat{AMO}\)=.\(\widehat{OAB}\)=\(\widehat{OAI}\)Xét tam giác OAI và tam giác OMA: \(\widehat{O}\)chung ,\(\widehat{OAI}\)=\(\widehat{AMO}\)\(\Rightarrow\)hai tam giác đồng dạng (g.g) \(\Rightarrow\)\(\frac{OI}{OA}\)=\(\frac{OA}{OM}\)\(\Leftrightarrow\)OI.OM=\(^{OA^2}\)=R​bình.​
  • c)