Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2: góc BEA=1/2*180=90 độ
Xét ΔBMN vuông tại M và ΔBEA vuông tại E có
góc MBN chung
=>ΔBMN đồng dạng với ΔBEA
=>BM/BE=BN/BA
=>BE*BN=BA*BM=BC^2
=>AC^2+BE*BN=AB^2=4*R^2
a) Ta thấy OI//AH//BK \(\left(\perp CD\right)\).
Xét hình thang ABKH (AH//BK), O là trung điểm AB. OI//AH \(\left(I\in HK\right)\) nên I là trung điểm HK.
b) Hạ \(CP\perp AB\) tại P, \(DQ\perp AB\) tại Q. Khi đó IE//CP//DQ \(\left(\perp AB\right)\).
Xét hình thang CDQP (CP//DQ) có I là trung điểm CD (hiển nhiên), IE//CP và \(E\in PQ\) nên IE là đường trung bình của hình thang CDQP \(\Rightarrow IE=\dfrac{CP+DQ}{2}\)
Lại có \(S_{ACB}=\dfrac{1}{2}AB.CP\), \(S_{ADB}=\dfrac{1}{2}.AB.DQ\)
\(\Rightarrow S_{ACB}+S_{ADB}=AB.\dfrac{CP+DQ}{2}=AB.IE\) (đpcm)
c) Ta có \(S_{AHKB}=\dfrac{AH+BK}{2}.HK=OI.HK\)
Do dây CD có độ dài không đổi nên khoảng cách từ O đến dây CD là OI cũng không đổi. Như vậy ta chỉ cần tìm vị trí của C để HK lớn nhất.
Thật vậy, dựng hình bình hành ABLH. Khi đó vì BK//AH nên \(L\in BK\). Đồng thời ta luôn có \(HK\le HL=AB\), suy ra \(S_{AHKB}\le OI.AB\).
Dấu "=" xảy ra \(\Leftrightarrow HK=HL\) \(\Leftrightarrow K\equiv L\) \(\Leftrightarrow\) AHKB là hình bình hành \(\Leftrightarrow\) HK//AB hay CD//AB \(\Rightarrow OI\perp AB\). Vậy C là điểm sao cho \(OI\perp AB\).
(Nếu muốn tìm cụ thể vị trí của C, thì mình nói luôn nó là điểm C sao cho \(sđ\stackrel\frown{AC}=180^o-2arc\cos\left(\dfrac{CD}{AB}\right)\) nhé. Chứng minh cái này dễ, mình nhường lại cho bạn.)
Chỗ vị trí C mình sửa lại là \(sđ\stackrel\frown{AC}=90^o-arc\sin\dfrac{CD}{AB}\) nhé.
a: ΔOAB cân tại O
mà OH là đường cao
nên H là trung điểm của AB
=>HA=HB=AB/2
ΔOCD cân tại O
mà OK là đường cao
nên K là trung điểm của CD
=>KC=KD=CD/2
\(HA=HB=\dfrac{AB}{2}\)
\(KC=KD=\dfrac{CD}{2}\)
mà AB=CD
nên HA=HB=KC=KD
Xét (O) có
AB,CD là hai dây
AB=CD
OH,OK lần lượt là khoảng cách từ tâm O đến hai dây AB,CD
Do đó: OH=OK
Xét ΔEHO vuông tại H và ΔEKO vuông tại K có
EO chung
OH=OK
Do đó: ΔEHO=ΔEKO
b: Xét (O) có
BA,CD là hai dây
BA=CD
Do đó: BD//AC
Xét ΔEAC có BD//AC
nên \(\dfrac{EB}{BA}=\dfrac{ED}{DC}\)
mà BA=DC
nên EB=ED