Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
O x y t z A B
CM: Ta có: OA + AB = OB (vì A nằm giữa O và B)
=> AB = OB - OA = 4 - 2 = 2 (cm)
=> OA = AB = OB/2 = 2 (cm)
=> A là trung điểm của OB
b) Do Oy nằm giữa Ox và Oz (\(\widehat{xOy}< \widehat{xOz}\)) nên \(\widehat{xOy}+\widehat{yOz}=\widehat{xOz}\)
=> \(\widehat{zOy}=\widehat{xOz}-\widehat{xOy}=120^0-40^0=80^0\)
c) Do Ot là tia p/giác của \(\widehat{xOz}\) nên :
\(\widehat{xOy}=\widehat{yOz}=\frac{\widehat{xOz}}{2}=\frac{120^0}{2}=60^0\)
Ot nằm giữa Oy và Oz nên \(\widehat{yOt}+\widehat{tOz}=\widehat{zOy}\)
=> \(\widehat{tOy}=\widehat{zOy}-\widehat{tOz}=80^0-60^0=20^0\)
1) a) Tuôi đã côm bách |
Có 2 thành viên đã gửi lời cảm ơn đến windysnow với bài viết này: |
nguyenphuongdang, vohungnam2003 |
#3 23-04-2015 | ||||
| ||||
Bài 3: Các cặp góc kề bù: __________________ |
bạn tự vẽ hình nha
a) Ta có:
\(\widehat{xOz}+\widehat{zOy}=90^o\)
Mà \(\widehat{xOz}=\widehat{nOy}\left(gt\right)\) ; Mà \(\widehat{zOy}=\widehat{xOm}\left(gt\right)\)
=>\(\widehat{nOy}+\widehat{zOy}=90^o\) ; =>\(\widehat{xOz}+\widehat{xOm}=90^o\)
\(\widehat{nOz}=90^o\) ; \(\widehat{zOm}=90^o\)
Ta có:
\(\widehat{nOm}=\widehat{nOz}+\widehat{zOm}=90^o+90^o=180^o\)
=> Om,On là hai tia đối nhau
b) Ta có:
\(Oz⊥MN\left(\widehat{nOz}=\widehat{mOz}=90^o\right)\)
Mà \(OM=ON\left(gt\right)\)
=> Oz là đường trung trực của MN
Bài giải
x y O 140 0 z m n
a, Hai góc \(xOz\) và \(yOz\) kề bù nên :
\(\widehat{xOz}+\widehat{yOz}=180^o\)
\(\widehat{xOz}+140^o=180^o\)
\(\widehat{xOz}=180^0-140^0\)
\(\widehat{xOz}=40^o\)
b, Om là tia phân giác của góc \(xOz\) \(\Rightarrow\text{ }\widehat{xOm}=\widehat{mOz}=\frac{1}{2}\cdot\widehat{xOz}=\frac{1}{2}\cdot40=20^0\)
On là tia phân giác của góc \(yOz\text{ }\Rightarrow\text{ }\widehat{yOn}=\widehat{nOz}=\frac{1}{2}\cdot\widehat{yOz}=\frac{1}{2}\cdot140^0=70^0\)
\(\Rightarrow\text{ }\widehat{xOm}+\widehat{mOz}+\widehat{yOn}+\widehat{nOz}=180^0\)
\(\widehat{mOz}+\widehat{nOz}=180^0-\widehat{xOm}-\widehat{yOn}\)
\(\widehat{mOz}+\widehat{nOz}=180^0-20^0-70\)
\(\widehat{mOz}+\widehat{nOz}=90^0\)
Vì hai góc \(mOz\) và \(nOz\) kề nhau , cùng nằm trên một nửa mặt phẳng và \(\widehat{mOz}+\widehat{nOz}=90^0\)
\(\Rightarrow\text{ }\text{OM vuông góc với ON}\)
a) Vì đ 0 nằm trên đgt xy => xOz kề bù với yOz => xOz + yOz = 180
Thay số : xOz + 140 = 180
xOz = 180 - 140 = 40
b) Vì Om là tia p giác của xOz => xOm = mOz = xOz / 2
Vì On là tia p giác của zOy => zOn = nOy = zOy / 2
Có: xOz và yOz là 2 góc kề bù => xOz + yOz = 180
\(\Rightarrow\) mOn = mOz + nOy
= xOz/2 + zOy/2
= (xOz + zOy) /2
= 180 /2
= 90
Suy ra mOn là góc vuông \(\Rightarrow\) Om vuông góc với On (Điều Phải Chứng Minh)
chọn (k) đúng cho mình nha
\(\widehat{noy}=180-\widehat{nox}=180-3.\widehat{mox}=180-3.\left(180-\widehat{moy}\right)\)
\(\widehat{noy}=180-3\left(180-2.\widehat{noy}\right)\)
=> \(\widehat{noy}=180-3.180+6.\widehat{noy}\)
\(\Rightarrow\widehat{noy}=72\)
Mình nghĩ khó mà có người giải hết chỗ bài tập đấy của bạn, nhiều quá
3/ (Bạn tự vẽ hình giùm)
a/ \(\Delta ABC\)và \(\Delta ADC\)có:
\(\widehat{BAC}=\widehat{ACD}\)(AB // DC; ở vị trí so le trong)
Cạnh AC chung
\(\widehat{CAD}=\widehat{ACB}\)(AB // DC; ở vị trí so le trong)
=> \(\Delta ABC\)= \(\Delta ADC\)(g. c. g)
=> AD = BC (hai cạnh tương ứng)
và AB = DC (hai cạnh tương ứng)
b/ Ta có AD = BC (cm câu a)
và \(AN=\frac{1}{2}AD\)(N là trung điểm AD)
và \(MC=\frac{1}{2}BC\)(M là trung điểm BC)
=> AN = MC
Chứng minh tương tự, ta cũng có: BM = ND
\(\Delta AMB\)và \(\Delta CND\)có:
BM = ND (cmt)
\(\widehat{ABM}=\widehat{NDC}\)(AB // CD; ở vị trí so le trong)
AB = CD (\(\Delta ABC\)= \(\Delta ADC\))
=> \(\Delta AMB\)= \(\Delta CND\)(c. g. c)
=> \(\widehat{BAM}=\widehat{NCD}\)(hai góc tương ứng)
và \(\widehat{BAC}=\widehat{ACN}\)(\(\Delta ABC\)= \(\Delta ADC\))
=> \(\widehat{BAC}-\widehat{BAM}=\widehat{ACN}-\widehat{NCD}\)
=> \(\widehat{MAC}=\widehat{ACN}\)(1)
Chứng minh tương tự, ta cũng có \(\widehat{AMC}=\widehat{ANC}\)(2)
và AN = MC (cmt) (3)
=> \(\Delta MAC=\Delta NAC\)(g, c. g)
=> AM = CN (hai cạnh tương ứng) (đpcm)
c/ \(\Delta AOB\)và \(\Delta COD\)có:
\(\widehat{BAO}=\widehat{OCD}\)(AB // DC; ở vị trí so le trong)
AB = CD (cm câu a)
\(\widehat{ABO}=\widehat{ODC}\)(AD // BC; ở vị trí so le trong)
=> \(\Delta AOB\)= \(\Delta COD\)(g. c. g)
=> OA = OC (hai cạnh tương ứng)
và OB = OD (hai cạnh tương ứng)
d/ \(\Delta ONA\)và \(\Delta MOC\)có:
\(\widehat{AON}=\widehat{MOC}\)(đối đỉnh)
OA = OC (O là trung điểm AC)
\(\widehat{OAN}=\widehat{OCM}\)(AM // NC; ở vị trí so le trong)
=> \(\Delta ONA\)= \(\Delta MOC\)(g. c. g)
=> ON = OM (hai cạnh tương ứng)
=> O là trung điểm MN
=> M, O, N thẳng hàng (đpcm)