\(\Delta\)ABC có M,N,P lần lượt là trung điểm của AB,AC,BC. Tính diện tích hình tam g...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1) cho phân thức: A=\(\frac{x-3}{7x^2+7x}\) a/ tìm giá trị của x để phân thức trên được xác địnhb/ tìm x để phân thức A có giá trị bằng 02) cho tam giác ABC vuông tại A, đường trung tuyến AM. gọi P là trung điểm của AB, Q là điểm đối xứng với M qua Pa) chứng minh : trứ giác AQBM là hình thoib) tính diện tích tam giác ABC, biết AB =10cm, AC=6cmc) tam giác BC cần điều kiện gì thì tứ giác AQBM là hình...
Đọc tiếp

1) cho phân thức: A=\(\frac{x-3}{7x^2+7x}\) 

a/ tìm giá trị của x để phân thức trên được xác định

b/ tìm x để phân thức A có giá trị bằng 0

2) cho tam giác ABC vuông tại A, đường trung tuyến AM. gọi P là trung điểm của AB, Q là điểm đối xứng với M qua P

a) chứng minh : trứ giác AQBM là hình thoi

b) tính diện tích tam giác ABC, biết AB =10cm, AC=6cm

c) tam giác BC cần điều kiện gì thì tứ giác AQBM là hình vuông

3) phân tích đa thức thành nhân tử 

a/ \(2x^3-12x^2+18x\)

b/\(16y^2-4x^2-12x-9\)

4) rút gọn các phân thức sau

a/\(\left(x-5\right)\left(x^2+26\right)+\left(5-x\right)\left(1-5x\right)\)

b/\(\left(\frac{2}{x-1}-\frac{1}{x+1}\right)\frac{x^2-1}{x^2+6x+9}+\frac{x+1}{2x+6}\)

5) cho biều thức P=\(\frac{8x^3-12x^2+x-1}{4x^2-4x+1}\)

a/ tìm điều kiện xác định của x để giá trị của phân thức2 được xác định

b/ tìm giá trị của x để giá trị của phân thức bằng 0

6/  tìm a để đa thức \(x^3-7x-x^2+a\)chia hết cho đa thức x-3

7/  cho tam giác ABC cân tại A, đường cao AM, gọi I là trung điềm AC, K là điểm đối xứng của Mqua I

a/ chứng minh rằng: tứ giác AMCK là hình chữ nhật 

b/ tìm điều kiện của tam giác ABC để tứ giác AKCM là hình vuông

c/ SO sánh diện tích tam giác ABC với diện tích tứ giác AKCM

3
31 tháng 12 2017

Bài 1:

a) Để giá trị của phân thức A được xác định <=> \(7x^2+7x\ne0\) <=>  \(7x.\left(x+1\right)\ne0\)<=> \(x\ne0\)và \(x\ne-1\)

=> Để giá trị của phân thức A được xác định thì x phải khác -1 và 0.

b) Để phân thức A = 0 => x - 3 = 0 => x = 3 (thỏa mãn đkxd)

=> Để giá trị phân thức A = 0 thì x = 3

31 tháng 12 2017

Bạn viết z chắc mỏi tay lắm. Mik sẽ giải cho bạn b3 nhé

a) \(2x^3-12x^2+18x=2x.\left(x^2-6x+9\right)=2x.\left(x-3\right)^2\)

b) \(16y^2-4x^2-12x-9=16y^2-\left(4x^2+12x+9\right)=16y^2-\left(2x+3\right)^2\)

\(=\left(4y+2x+3\right).\left(4y-2x-3\right)\)

17 tháng 2 2020

Ta có : \(3\left(x^2+y^2+z^2\right)=\left(x+y+z\right)^2\)

\(\Leftrightarrow3\left(x^2+y^2+z^2\right)=x^2+y^2+z^2+2\left(xy+yz+zx\right)\)

\(\Leftrightarrow2\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

\(\Leftrightarrow x=y=z\)

Khi đó : \(3x^{2018}=27^{673}=\left(3^3\right)^{673}=3^{2019}\)

\(\Leftrightarrow x^{2018}=3^{2018}\)

\(\Leftrightarrow\orbr{\begin{cases}x=y=z=3\\x=y=z=-3\end{cases}}\)

Đến đây tự tính A nha!

7 tháng 8 2018

      \(2x^2+y^2+2xy-8x-6y+10=0\)

\(\Rightarrow2.\left(2x^2+y^2+2xy-8x-6y+10\right)=0\)

\(\Rightarrow4x^2+2y^2+4xy-16x-12y+20=0\)

\(\Rightarrow\left(4x^2+y^2+16+4xy-8y-16x\right)+\left(y^2-4y+4\right)=0\)

\(\Rightarrow\left(2x+y-4\right)^2+\left(y-2\right)^2=0\left(1\right)\)

Ta có: \(\hept{\begin{cases}\left(2x+y-4\right)^2\ge0\forall x;y\\\left(y-2\right)^2\ge0\forall y\end{cases}\Rightarrow\left(2x+y-4\right)^2+\left(y-2\right)^2\ge0\forall x;y\left(2\right)}\)

Từ (1) và (2) \(\Rightarrow\hept{\begin{cases}2x+y-4=0\\y-2=0\end{cases}\Rightarrow\hept{\begin{cases}2x+y=4\\y=2\end{cases}\Rightarrow}\hept{\begin{cases}2x+2=4\\y=2\end{cases}\Rightarrow}\hept{\begin{cases}x=1\\y=2\end{cases}}}\)

Chúc bạn học tốt.

8 tháng 12 2019

Áp dụng BĐT Cô si ta có:

\(x^3+8y^3+1\ge3\sqrt[3]{x^3\cdot8y^3\cdot1}=6xy\)

\(\Rightarrow x^3+8y^3+1-6xy\ge0\)

Dấu "=" xảy ra tại \(x=2y=1\Rightarrow x=1;y=\frac{1}{2}\)

Khi đó:

\(A=x^{2018}+\left(y-\frac{1}{2}\right)^{2019}=1^{2018}+0^{2019}=1\)

\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{2}{xy}-\frac{1}{z^2}\)

Khai triển cả 2 vế ta được \(\left(\frac{1}{y}+\frac{1}{z}\right)^2+\left(\frac{1}{x}+\frac{1}{z}\right)^2=0\)

=>\(\hept{\begin{cases}\frac{1}{y}+\frac{1}{z}=0\\\frac{1}{x}+\frac{1}{z}=0\end{cases}}\)=>\(\frac{1}{x}=\frac{1}{y}\Rightarrow x=y\)

=>\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{2}{x}+\frac{1}{z}=2\Rightarrow\frac{4}{x^2}+\frac{4}{xz}+\frac{1}{z^2}=4\)(1)

\(\frac{2}{xy}-\frac{1}{z^2}=\frac{2}{x^2}-\frac{1}{z^2}=4\)(2)

Từ (1) và (2) suy ra

\(\frac{2}{x^2}+\frac{4}{xz}+\frac{2}{z^2}=0\Rightarrow\frac{1}{x^2}+\frac{2}{xz}+\frac{1}{z^2}=0\Rightarrow\left(\frac{1}{x}+\frac{1}{z}\right)^2=0\)\(\Rightarrow\frac{1}{x}+\frac{1}{z}=0\Rightarrow x=y=-z\)

=> \(P=\left(x+2y+z\right)^{2019}=\left(2y\right)^{2019}\)

à thêm cái này nữa. Sorry viết thiếu

Vì x=y=-z\(\Rightarrow\frac{2}{x}-\frac{1}{x}=2\Rightarrow\frac{1}{x}=2\Rightarrow x=\frac{1}{2}.\)

lúc đó  \(P=\left(2.\frac{1}{2}\right)^{2019}=1\)

17 tháng 7 2019

Từ \(3\left(x^2+y^2+z^2\right)=\left(x+y+z\right)^2\)

Suy ra: x=y=z

\(\Rightarrow3x^{2018}=3y^{2018}=3z^{2018}=27^{673}=3^{2019}\)

\(\Leftrightarrow x^{2018}=y^{2018}=z^{2018}=3^{2018}\)

\(\Rightarrow x,y,z=3\)

Dễ tính A

17 tháng 7 2019

Cảm ơn bạn nhé ,,....