K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2018

Tự vẽ hình nha Chung

Câu a), b) dễ tự làm nha, tớ làm câu c)

c) Vì BK vuông góc AD => ΔDBK vuông tại K

=> góc KBD = 90 độ - góc D

Mà góc KBD = góc MBH

=> góc MBH = 90 độ - góc D (1)

Δ AMD vuông tại M

=> góc MAD = 90 độ - góc D (2)

Từ (1) , (2) => góc MBH = góc MAD ( đpcm)

25 tháng 2 2018

thank HUY yeu

4 tháng 12 2016

A C M B D E

Xét ΔABM và ΔACM , có :

AM là cạnh chung

BM = CM ( M là trung điểm của BC)

AB = AC ( gt )

=> ΔABM = Δ ACM ( c - c -c )

=> Góc BAM = CAM (2 góc tương ứng )

Vậy AM là tia phân giác của góc BAC

Ta có : MB + BD = MD

MC + CE = ME

Mà MC = MB , BD = CE => MD = ME

Xét ΔAMD và ΔAME ,có:

MD = ME ( c/m trên )

AM là cạnh chung

Góc DMA = góc AME ( ΔABM = ΔACM )

=> ΔADM = ΔAEM ( c - g - c )

=> Góc DAM = góc EAM ( 2 góc tương ứng )

Vậy AM là tia phân giác của góc DAE

 

 

27 tháng 11 2016

A B C D E M 1 2 1 2

Giải:
a) Vì \(\Delta ABC\) có AB = AC nên \(\Delta ABC\) cân tại A

\(\Rightarrow\widehat{B_2}=\widehat{C_1}\)

\(\Rightarrow180^o-\widehat{B_2}=180^o-\widehat{C_1}\)

hay \(\widehat{DBE}-\widehat{B_2}=\widehat{ECD}-\widehat{C_1}\)

\(\Rightarrow\widehat{B_1}=\widehat{C_2}\) (*)

Xét \(\Delta ABD,\Delta ACE\) có:

\(AB=AC\left(gt\right)\)

\(\widehat{B_1}=\widehat{C_2}\) ( theo (*) )

\(BD=CE\left(gt\right)\)

\(\Rightarrow\Delta ABD=\Delta ACE\left(c-g-c\right)\)

\(\Rightarrow AD=AE\) ( cạnh t/ứng ) (đpcm)

b) Ta có: \(BM=MC\left(=\frac{1}{2}BC\right)\)

\(BD=CE\left(gt\right)\)

\(\Rightarrow BM+BD=MC+CE\)

\(\Rightarrow MD=ME\) (**)

Xét \(\Delta DAM,\Delta MAE\) có:
\(AD=AE\) ( theo phần a )

\(MD=ME\) ( theo (**) )

\(AM\): cạnh chung

\(\Rightarrow\Delta DAM=\Delta MAE\left(c-c-c\right)\)

\(\Rightarrow\widehat{DAM}=\widehat{MAE}\) ( góc t/ứng )

\(\Rightarrow AM\) là tia phân giác của \(\widehat{DAE}\left(đpcm\right)\)

Vậy...

27 tháng 11 2016

Ta có hình vẽ

A B C D E M a/ Ta có: \(\widehat{ABC}\)=\(\widehat{ACB}\) (vì \(\Delta\)ABC cân) (*)

\(\widehat{ABC}\)+\(\widehat{ABD}\)=1800 (kề bù) (**)

\(\widehat{ACB}\)+\(\widehat{ACE}\)=1800 (kề bù) (***)

Từ (*),(**),(***) => \(\widehat{ABD}\) = \(\widehat{ACE}\) (1)

Ta có: AB = AC (GT) (2)

BD = CE (GT) (3)

Từ (1),(2),(3) => tam giác ABD = tam giác ACE

=> AD = AE (2 cạnh tương ứng) (đpcm)

b/ Xét tam giác AMD và tam giác AME có:

AD = AE (đã chứng minh ở câu a)

AM: cạnh chung

\(\begin{cases}BM=MC\\BD=CE\end{cases}\)\(\Rightarrow\) MB+BD=MC+CE \(\Rightarrow\)MD = ME

=> tam giác AMD = tam giác AME (c.c.c)

=> \(\widehat{DAM}\)=\(\widehat{EAM}\) (2 góc tương ứng)

=> AM là phân giác góc DAE (đpcm)

2 tháng 12 2018

Câu d là BE nhé!

\(Bài 1. Cho góc xOy, có Ot là tia phân giác. Lấy điểm A trên tia Ox, điểm B trên tia Oy sao cho OA = OB. Vẽ đoạn thẳng AB cắt Ot tại M. Chứng minh a) OAM = OBM; b) AM = BM; OM  AB c) OM là đường trung trực của AB d) Trên tia Ot lấy điểm N . Chứng minh NA = NB Bài 2. Cho ABC vuông tại A, trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đường thẳng AC. Chứng mỉnhằng: a) AB //...
Đọc tiếp

\(Bài 1. Cho góc xOy, có Ot là tia phân giác. Lấy điểm A trên tia Ox, điểm B trên tia Oy sao cho OA = OB. Vẽ đoạn thẳng AB cắt Ot tại M. Chứng minh a) OAM = OBM; b) AM = BM; OM  AB c) OM là đường trung trực của AB d) Trên tia Ot lấy điểm N . Chứng minh NA = NB Bài 2. Cho ABC vuông tại A, trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đường thẳng AC. Chứng mỉnhằng: a) AB // KE b)  ABC =  KEC ; BC = CE Bài 3. Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C. Trên tia Oy lấy hai điểm B,D sao cho OA = OB, AC = BD. a) Chứng minh: AD = BC. b) Gọi E là giao điểm AD và BC. Chứng minh: EAC = EBD c) Chứng minh: OE là phân giác của góc xOy, OE CD Bài 4. Cho ABC coù BÂ=900, gọi M là trung điểm của BC. Trên tia đối của tia AM lấy điểm E sao cho ME = MA. a) Tính  BCE b) Chứng minh BE // AC. Bài 5. Cho ABC, lấy điểm D thuộc cạnh BC ( D không trùng với B,C). Gọi Mlà trung điểm của AD. Trên tia đối của tia MB lấy điểm E sao cho ME= MB, trên tia đối của tia MC lấy điểm F sao cho MF= MC. Chứng minh rằng: a) AME = DMB; AE // BC b) Ba điểm E, A, F thẳng hàng c) BF // CE Bài 6: Cho có  B =  C , kẻ AH  BC, H  BC . Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Chứng minh: a) AB = AC b) ABD = ACE c) ACD = ABE d) AH là tia phân giác của góc DAE e) Kẻ BK  AD, CI  AE. Chứng minh ba đường thẳng AH, BK, CI cùng đi qua một điểm. \)

2
27 tháng 8 2017

Tự mà làm lấy

17 tháng 3 2022

chịu. nhình rối hết cả mắt @-@