Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dùng Pitago đảo thử từng cặp 1 thôi:v
ta có: \(\left(b-c\right)^2+h^2=b^2+c^2-2bc+h^2\)(1)
vì tam giác ABC vuông ở A có đường cao AH nên \(a^2=b^2+c^2\)và\(AB.AB=AH.BC=2S\)hay\(b.c=a.h\)
\(\Rightarrow b^2+c^2-2bc+h^2=a^2-2ah+h^2=\left(a-h\right)^2\)
2/ Không mất tính tổng quát, giả sử \(c=min\left\{a,b,c\right\}\).
Nếu abc = 0 thì có ít nhất một số bằng 0. Giả sử c = 0. BĐT quy về: \(a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
Đẳng thức xảy ra khi a = b; c = 0.
Nếu \(abc\ne0\). Chia hai vế của BĐT cho \(\sqrt[3]{\left(abc\right)^2}\)
BĐT quy về: \(\Sigma_{cyc}\sqrt[3]{\frac{a^4}{b^2c^2}}+3\ge2\Sigma_{cyc}\sqrt[3]{\frac{ab}{c^2}}\)
Đặt \(\sqrt[3]{\frac{a^2}{bc}}=x;\sqrt[3]{\frac{b^2}{ca}}=y;\sqrt[3]{\frac{c^2}{ab}}=z\Rightarrow xyz=1\)
Cần chúng minh: \(x^2+y^2+z^2+3\ge2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(\Leftrightarrow x^2+y^2+z^2+2xyz+1\ge2\left(xy+yz+zx\right)\) (1)
Theo nguyên lí Dirichlet thì trong 3 số x - 1, y - 1, z - 1 tồn tại ít nhất 2 số có tích không âm. Không mất tính tổng quát, giả sử \(\left(x-1\right)\left(y-1\right)\ge0\)
\(\Rightarrow2xyz\ge2xz+2yz-2z\). Thay vào (1):
\(VT\ge x^2+y^2+z^2+2xz+2yz-2z+1\)
\(=\left(x-y\right)^2+\left(z-1\right)^2+2xy+2xz+2yz\)
\(\ge2\left(xy+yz+zx\right)\)
Vậy (1) đúng. BĐT đã được chứng minh.
Đẳng thức xảy ra khi a = b = c hoặc a = b, c = 0 và các hoán vị.
Check giúp em vs @Nguyễn Việt Lâm, bài dài quá:(
Để đưa về chứng minh $(1)$ và $(2)$ ta dùng:
Định lí SOS: Nếu \(X+Y+Z=0\) thì \(AX^2+BY^2+CZ^2\ge0\)
khi \(\left\{{}\begin{matrix}A+B+C\ge0\\AB+BC+CA\ge0\end{matrix}\right.\)
Chứng minh: Vì \(\sum\left(A+C\right)=2\left(A+B+C\right)\ge0\)
Nên ta có thể giả sử \(A+C\ge0\). Mà $X+Y+Z=0$ nên$:$
\(AX^2+BY^2+CZ^2=AX^2+BY^2+C\left[-\left(X+Y\right)\right]^2\)
\(={\frac { \left( AX+CX+CY \right) ^{2}}{A+C}}+{\frac {{Y}^{2} \left( AB+AC+BC \right) }{A+C}} \geq 0\)
c)
Theo phần b: \(\triangle OBM=\triangle OCN\Rightarrow \angle OBM=\angle OCN(1)\)
Ta cũng thấy:
\(AO\) là trung trực của $BC$ (đã chỉ ra ở phần b) nên \(AB=AC, OB=OC\)
Do đó: \(\triangle ABO=\triangle ACO\) (c.c.c)
\(\Rightarrow \angle ABO=\angle ACO\) hay \(\angle OBM=\angle ACO(2)\)
Từ \((1);(2)\Rightarrow \angle ACO=\angle OCN\)
Mà tổng 2 góc trên bằng $180^0$ nên mỗi góc bằng $90^0$
Vậy \(\angle OCN=90^0\Rightarrow OC\perp AN\)
d)
Ta có: \(\angle OBM=\angle OCN=90^0\Rightarrow AB\perp OB\)
Tam giác vuông tại $B$ là $ABO$ có đường cao $BH$ nên theo công thức hệ thức lượng trong tam giác vuông, ta thu được kết quả:
\(\frac{1}{AB^2}+\frac{1}{BO^2}=\frac{1}{1}{BH^2}=\frac{1}{(\frac{BC}{2})^2}=\frac{4}{BC^2}\) (do tam giác $ABC$ cân tại $A$ nên chân đường cao $H$ đồng thời cũng là trung điểm của $BC$)
Ta có đpcm.
Theo hệ thức lượng trong tam giác vuông: \(ha=bc\Rightarrow h=\frac{bc}{a}\) và \(a^2=b^2+c^2\)
Khi đó: \(\frac{a+b+c}{h}=\frac{a+b+c}{\frac{bc}{a}}=\frac{a^2+ab+ac}{bc}=\frac{a^2}{bc}+\frac{ab+ac}{bc}\)
Áp dụng BĐT AM-GM: \(bc\le\frac{b^2+c^2}{2}=\frac{a^2}{2};ab+ac\ge2a\sqrt{bc}\)
Suy ra: \(\frac{a+b+c}{h}=\frac{a^2}{bc}+\frac{ab+ac}{bc}\ge\frac{2a^2}{a^2}+\frac{2a\sqrt{bc}}{bc}=2+\frac{2a}{\sqrt{bc}}\)(1)
Lại có: \(\sqrt{bc}\le\sqrt{\frac{b^2+c^2}{2}}=\frac{\sqrt{a^2}}{\sqrt{2}}=\frac{a}{\sqrt{2}}\) (2)
Từ (1); (2) => \(\frac{a+b+c}{h}\ge2+\frac{2a}{\frac{a}{\sqrt{2}}}=2+2\sqrt{2}=2\left(1+\sqrt{2}\right)\)(đpcm)
Dấu "=" xảy ra <=> Tam giác ABC vuông cân ở A.