Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi `AM` là trung tuyến của `ΔABC`
`=>AM` đồng thời là đường cao
`=>ΔAMB;ΔAMC⊥M`
`AM` là trung tuyến nên
`BM=MC=(BC)/2=4(cm)`
Áp dụng định lý py-ta-go ta tính được
`AM^2=AB^2-BM^2=5^2-4^2=25-16=9(cm)`
`=>AM=3cm`
`G` trọng tâm
`=>GA=2/3AM=2cm`
`GM=1/3AM=1cm`
Áp dụng định lý py-ta-go lần nữa ta tính đc
`GC^2=BG^2=BM^2+GM^2=4^2+1^2=16+1=17cm`
`=>GB=GC=`\(\sqrt{17cm}\)
BC = \(\sqrt{8^2+6^2}\)= 10 cm
trung truyến AM = BC/2 = 5cm
AG = 2AM/3 = 10/3 cm.
trung tuyến BN = \(\sqrt{\frac{2BC^2+2BA^2-AC^2}{4}}\)= \(\sqrt{\frac{2\left(10^2+6^2\right)-8^2}{4}}\)
BG = 2BN/3
trung tuyến CP = \(\sqrt{\frac{2BC^2+2AC^2-AB^2}{4}}\)= \(\sqrt{\frac{2\left(10^2+8^2\right)-6^2}{4}}\)
BG = 2CP/3
a: AD=BE=CF=8*căn 3/2=4*căn 3(cm)
CG=2/3*4*căn 3=8/3*căn 3(cm)
b: Vì ΔABC đều có G là trọng tâm
nên G là tâm đường tròn ngoại tiếp
=>GA=GB=GC
Bài làm:
Kẻ trung tuyến AM, CN của tam giác ABC
Vì AB = AC = 5cm => Tam giác ABC cân tại A
=> AM đồng thời là đường cao của tam giác ABC
=> AM _|_ BC
Vì M là trung điểm của BC => BM = MC = BC/2 = 4cm
Áp dụng định lý Pytago ta tính được: \(AM^2=AB^2-BM^2=5^2-4^2=9cm\)
=> AM = 3cm
=> GA = 2/3AM = 2cm ; GM = 1cm
Áp dụng Pytago lần nữa ta tính được:
\(GC^2=BG^2=BM^2+GM^2=4^2+1^2=17\)
=> \(GB=GC=\sqrt{17}cm\)