Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)
\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\) (1)
áp dụng (x2 +y2 +z2)(m2+n2+p2) \(\ge\left(xm+yn+zp\right)^2\)
(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\) <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\) ( vậy (1) đúng)
dấu '=' khi a=b=c
Ta có : \(\frac{b-c}{\left(a-b\right)\left(a+c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}\)
\(=\frac{-\left(a-b\right)+\left(a-c\right)}{\left(a-b\right)\left(a-c\right)}+\frac{-\left(b-c\right)+\left(b-a\right)}{\left(b-c\right)\left(b-a\right)}+\frac{-\left(c-a\right)+\left(c-b\right)}{\left(c-a\right)\left(c-b\right)}\)
\(=-\frac{1}{a-c}+\frac{1}{a-b}+\frac{-1}{b-a}+\frac{1}{b-c}+\frac{-1}{c-b}+\frac{1}{c-a}\)
\(=\frac{1}{c-a}+\frac{1}{a-b}+\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{b-c}+\frac{1}{c-a}\)
\(=\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}\)
Ta có:
\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}=\frac{b-a+a-c}{\left(a-b\right)\left(a-c\right)}=\frac{b-a}{\left(a-b\right)\left(a-c\right)}+\frac{a-c}{\left(a-b\right)\left(a-c\right)}=\frac{1}{c-a}+\frac{1}{a-b}\)
Tương tự:
\(\frac{c-a}{\left(b-c\right)\left(b-a\right)}=\frac{c-b+b-a}{\left(b-c\right)\left(b-a\right)}=\frac{c-b}{\left(b-c\right)\left(b-a\right)}+\frac{b-a}{\left(b-c\right)\left(b-a\right)}=\frac{1}{a-b}+\frac{1}{b-c}\)
Và: \(\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{a-c+c-b}{\left(c-a\right)\left(c-b\right)}=\frac{a-c}{\left(c-a\right)\left(c-b\right)}+\frac{c-b}{\left(c-a\right)\left(c-b\right)}=\frac{1}{b-c}+\frac{1}{c-a}\)
=> \(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{1}{c-a}+\frac{1}{a-b}+\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{b-c}+\frac{1}{c-a}\)
=> \(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}\)
=> đpcm
đặt x=a-b;y=b-c;z=c-a
ta có x+y+z=0
nên ta có ĐPCM
\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\)
<=> \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)\)
<=> \(2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=0\)
<=> \(\frac{z}{xyz}+\frac{y}{xyz}+\frac{x}{xyz}=0\)
<=> \(\frac{x+y+z}{xyz}=0\) (luôn đúng )
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
\(\frac{yz}{xyz}+\frac{xz}{xyz}+\frac{xy}{xyz}=0\)
\(\frac{yz+xz+xy}{xyz}=0\)
yz + xz + xy = 0
\(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2xz+2yz=x^2+y^2+z^2+2\times\left(xy+xz+yz\right)=x^2+y^2+z^2+2\times0=x^2+y^2+z^2\left(\text{đ}pcm\right)\)
a) Từ giả thiết suy ra: xy + yz + zx = 0
Do đó:
\(\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)=x^2+y^2+z^2\)
b) Đặt \(\frac{1}{a-b}=x\); \(\frac{1}{b-c}=y\); \(\frac{1}{c-a}=z\)
Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=a-b+b-c+c-a=0\)
Theo câu a ta có: \(x^2+y^2+z^2=\left(x+y+z\right)^2\)
Suy ra điều phải chứng minh
1/ Đặt \(a-b=x,b-c=y,c-a=z\)
Ta có: \(\frac{y}{x\left(-z\right)}+\frac{z}{y\left(-x\right)}+\frac{x}{z\left(-y\right)}=\frac{2}{x}+\frac{2}{y}+\frac{2}{z}\)
\(\frac{\left(-1\right)y^2}{xyz}+\frac{\left(-1\right)z^2}{xyz}+\frac{\left(-1\right)x^2}{xyz}=\frac{2yz}{xyz}+\frac{2zx}{xyz}+\frac{2xy}{xyz}\)
\(\left(-1\right)\left(x^2+y^2+z^2\right)=2\left(xy+yz+zx\right)\Rightarrow x^2+y^2+z^2+2xy+2yz+2zx=0\)
\(\Rightarrow\left(x+y+z\right)^2=0\Rightarrow x+y+z=0\)luôn đúng vì a-b+b-c+c-a=0
Vậy suy ra đpcm. BẤM ĐÚNG NHÉ
Câu 1 gần tương tự bài 3.2 sách bài tập toán 8 tập 2 trang 18
Đặt x = a - b ; y = b - c ; z = c - a thì x + y + z = a - b + b - c + c - a = 0
Ta có \(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{y^2}\)
= \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{y}\right)^2-2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)\)
= \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2-2\frac{x+y+z}{xyz}\)
= \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)^2\)( đpcm )
Ta có : \(\frac{a}{2009}=\frac{b}{2011}=\frac{c}{2013}=\frac{a-b}{-2}=\frac{b-c}{-2}=\frac{a-c}{-4}\)
\(=>\frac{\left(a-c\right)^2}{16}=\left(\frac{a-b}{-2}\right).\left(\frac{b-c}{-2}\right)=\frac{\left(a-b\right).\left(b-c\right)}{4}\)
\(=>\frac{\left(a-c\right)^2}{4}=\left(a-c\right).\left(b-c\right)\)
+) a=b=c=0
=>\(\frac{\left(a-c\right)^2}{4}=0;\left(a-b\right)\left(b-c\right)=0\Rightarrow\frac{\left(a-c\right)^2}{4}=\left(a-b\right)\left(b-c\right)\)(1)
+) \(a\ne b\ne c\ne0\)
Áp dụng tc của dãy tỉ số bằng nhau ta có
\(\frac{a}{2009}=\frac{b}{2011}=\frac{c}{2013}=\frac{a-b}{-2}=\frac{b-c}{-2}=\frac{c-a}{4}\)
\(\Rightarrow\frac{\left(a-c\right)^2}{4^2}=\frac{\left(a-b\right)\left(a+b\right)}{\left(-2\right)\left(-2\right)}\Rightarrow\frac{\left(a-c\right)^2}{16}=\frac{\left(a-b\right)\left(b-c\right)}{4}\Rightarrow\frac{\left(a-c\right)^2}{4}=\left(a-b\right)\left(b-c\right)\)(2)
Từ (1) và (2)
=> đpcm