K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2021

Ta sẽ CM tổng của 2 số chính phương chia 4 không thể có số dư là 3.

Thật vậy mọi số chính phương chẵn luôn chia hết cho 4.

mọi số chính phương lẻ luôn chia 4 dư 1 (vì (2x+1)2=4x(x+1)+1 chia 4 dư 1)

Do đó tổng của hai số chính phương chỉ có thể có số dư 0,1 hoặc 2 khi chia cho 4

Mà các số trên đều được viết dưới dạng 11...1=10...0+11.

Mà 10...0 chia hết cho 4 và 11 chia 4 dư 3 nên dãy số này không có số nào biểu diễn được dưới dạng tổng của 2 số chính phương (đpcm)

DD
17 tháng 5 2021

Giả sử trong \(2003\)số đã cho không có số nào chia hết cho \(2003\).

Khi đó có ít nhất \(2\)số có cùng số dư khi chia cho \(2003\).

Giả sử đó là \(a=11...1\)(\(n\)chữ số \(1\)) và \(b=11...1\)(\(m\)chữ số \(1\)).

Không mất tính tổng quát, giả sử \(a>b\).

Ta có: \(a-b=11...1-11...1=11...100...0\)(\(n-m\)chữ số \(1\)\(m\)chữ số \(0\)

\(=11...1.10^m⋮2003\)

mà ta có \(\left(10^m,2003\right)=1\)suy ra \(11...1⋮2003\)(\(n-m\)chữ số \(1\)

trái với điều ta giả sử. 

Do đó ta có đpcm. 

18 tháng 5 2021

cảm ơn anh nhiều ạ

11 tháng 6 2019

Giả sử tồn tại \(A,B\inℤ\)để có đẳng thức \(99999+11111\sqrt{3}=\left(A+B\sqrt{3}\right)^2\)

Suy ra \(99999+11111\sqrt{3}=A^2+3B^2+2\sqrt{3}AB\)

\(\Leftrightarrow2\sqrt{3}AB-11111\sqrt{3}=99999-A^2-3B^2\)

\(\Leftrightarrow\sqrt{3}\left(2AB-11111\right)=99999-A^2-3B^2\)

\(\Leftrightarrow\sqrt{3}=\frac{99999-A^2-3B^2}{2AB-11111}\)

Dễ thấy Vế trái là một số vô tỉ; Vế phải là một số hữu tỉ => Vô lí

Vậy số \(99999+11111\sqrt{3}\)không thể biểu diễn dưới dạng \(\left(A+B\sqrt{3}\right)^2.\)

24 tháng 8 2019

https://olm.vn/hoi-dap/detail/57202292544.html

Link ạ!

Tham khảo nhé

21 tháng 11 2015

1.Vì số chính phương bằng bình phương của một số tự nhiên nên có thể thấy ngay số chính phương phải có chữ số tận cùng là một trong các chữ số 0 ; 1 ; 4 ; 5 ; 6 ; 9

2. 

Một số chính phương được gọi là số chính phương chẵn nếu nó là bình phương của một số chẵn, là số chính phương lẻ nếu nó là bình phương của một số lẻ. (Nói một cách khác, bình phương của một số chẵn là một số chẵn, bình phương của một số lẻ là một số lẻ)

 

 

                                                                          

21 tháng 11 2015

chưa hẳn số chính phương bao giờ cũng TC = các chữ số đó đâu

VD: 21 không là số chính phương

81=92 là số chính phương

7 tháng 1 2019

 Kí hiệu S(n)S(n) là tổng các chữ số của nn. Ta có S(n)≡nS(n)≡n (mod 9).

Do đó sau khi thay nn bằng S(n)S(n) thì số dư khi chia cho 9 là không đổi.

⇒⇒ Kết quả cuối cùng là các số có 1 chữ số là số dư của số ban đầu khi chia 9.

Mà số đầu và số cuối của dãy chia 9 dư 1 nên số dư 1 là nhiều nhất.

Tức là chữ số 1 xuất hiện nhiều nhất.