K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2019

Chọn D.

Vì un+1 = un.e nên dễ thấy dãy số (un) là cấp số nhân có công bội q = e

ln2u6 – (ln u8 +ln u4) + 1 = 0 ln2u6 – (ln u8u4) + 1 = 0 (ln u6 – 1)2 = 0

ln u6 = 1 u6 = e u1 = e-4

20 tháng 6 2019

Chọn  D

Ta có u n  là cấp số nhân công bội bằng 2.

Ta có

2 4 u 1 + 1 + 2 3 - 2 u 2 = 2 4 u 1 + 1 + 2 3 - 4 u 1 ≥ 2 2 4 u 1 + 1 . 2 3 - 4 u 1 = 8

Mặt khác

Suy ra

 

Vậy  2 4 u 1 + 1 + 2 3 - 2 u 2 = 8 log 2 ( 2 u 3 2 - 8 u 2 + 4 )

 

 

 suy ra giá trị nhỏ nhất của n cần tìm là 2021

8 tháng 2 2022

Ủa lớp 9 học lim rồi á?

16 tháng 11 2017

Chọn C

Phương pháp: Dễ thấy  u n = u n - 1 + 6 , ∀ n ≥ 2  suy ra dãy số đã cho là cấp số cộng công sai bằng 6.

Vậy ta cần tìm số hạng đầu.

Cách giải: Ta có

log 2 u 5 + log 2 u 9 + 8 = 11

V ậ y   u 1 = u 5 - 4 . 6 = 8

Do đó:

S n = u 1 + u 2 + . . + u n

= n u 1 + n ( n - 1 ) 2 d

= 3 n 2 + 5 n

⇔ 3 n 2 + 5 n - 32 > 0

Vậy số tự nhiên n nhỏ nhất thỏa mãn S n ≥ 2 5  là 3.

NV
30 tháng 12 2020

\(u_n=2u_{n-1}+3n-1\)

\(\Leftrightarrow u_n+3n+5=2\left(u_{n-1}+3\left(n-1\right)+5\right)\)

Đặt \(u_n+3n+5=v_n\Rightarrow\left\{{}\begin{matrix}v_1=10\\v_n=2v_{n-1}\end{matrix}\right.\)

\(\Rightarrow v_n\) là CSN với công bội 2

\(\Rightarrow v_n=10.2^{n-1}\Rightarrow u_n+3n+5=10.2^{n-1}\)

\(\Leftrightarrow u_n=10.2^{n-1}-3n-5\)

\(\Rightarrow u_{2019}=10.2^{2018}+3.2019-1=...\)

22 tháng 12 2018

Chọn D.

Ta có    

 

Đặt 

suy ra (vn) là cấp số nhân với 

Suy ra u1 + u2 + … + un = (v1 + v2 + … + vn) – n.2/3

Yêu cầu bài toán:

Vậy giá trị nhỏ nhất của n thỏa mãn bài toán là n = 146.

NV
19 tháng 4 2020

Bài 4:

\(u_n=5.\left(\frac{1}{2}\right)^{2n-1}=10.\left(\frac{1}{2}\right)^{2n}=10\left(\frac{1}{4}\right)^n\)

Là cấp số nhân với \(u_1=10\) và công bội \(q=\frac{1}{4}\)

Bài 5:

\(S_5=u_1.\frac{q^4-1}{q-1}=u_1.\frac{\left(\frac{1}{3}\right)^4-1}{\frac{1}{3}-1}=\frac{121}{81}u_1\)

\(\Rightarrow u_1=\frac{81}{121}S_5=81\)

Bài 6:

\(\left\{{}\begin{matrix}u_1q=4\\u_1q^3=9\end{matrix}\right.\) \(\Rightarrow\left(u_1q^2\right)^2=36\Rightarrow\left[{}\begin{matrix}u_1q^2=6\\u_1q^2=-6\end{matrix}\right.\)

\(u_3=u_1q^2\Rightarrow u_3=\pm6\)

NV
19 tháng 4 2020

Bài 2:

\(\left\{{}\begin{matrix}u_1q^3-u_1q=24\\u_1q^2-u_1=12\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}u_1q\left(q^2-1\right)=24\\u_1\left(q^2-1\right)=12\end{matrix}\right.\)

\(\Leftrightarrow\frac{u_1q\left(q^2-1\right)}{u_1\left(q^2-1\right)}=\frac{24}{12}\Rightarrow q=2\Rightarrow u_1=\frac{12}{q^2-1}=4\)

\(\Rightarrow S_8=u_1.\frac{q^8-1}{q-1}=4\left(2^8-1\right)=...\)

Câu 3:

\(u_{10}=u_1q^9=4\left(-2\right)^9=-2^{11}\)

\(S_{15}=u_1.\frac{q^{15}-1}{q-1}=4.\frac{\left(-2\right)^{15}-1}{-3}=\frac{3}{4}\left(2^{15}+1\right)\)

28 tháng 11 2018

Chọn đáp án A