Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
T lm nhé!
Ta có: \(U_{n+1}=\dfrac{\left(13+\sqrt{3}\right)^{n+1}-\left(13-\sqrt{3}\right)^{n+1}}{2\sqrt{3}}\)
\(=\dfrac{\left(13+\sqrt{3}\right)^n\cdot\left(13+\sqrt{3}\right)-\left(13-\sqrt{3}\right)^n\cdot\left(13-\sqrt{3}\right)}{2\sqrt{3}}\)
\(=\dfrac{\left(13+\sqrt{3}\right)^n\cdot\left(26+\sqrt{3}-13\right)-\left(13-\sqrt{3}\right)^n\left(26-\sqrt{3}-13\right)}{2\sqrt{3}}\)
\(=\dfrac{26\left(13+\sqrt{3}\right)^n+\sqrt{3}\left(13+\sqrt{3}\right)^n-13\left(13+\sqrt{3}\right)^n}{2\sqrt{3}}\)\(\dfrac{-26\left(13-\sqrt{3}\right)^n+\sqrt{3}\left(13-\sqrt{3}\right)^n+13\left(13-\sqrt{3}\right)^n}{.}\)
\(=\dfrac{26\left[\left(13+\sqrt{3}\right)^n-\left(13-\sqrt{3}\right)^n\right]}{2\sqrt{3}}\)\(+\dfrac{\sqrt{3}\left(13+\sqrt{3}\right)^n-13\left(13+\sqrt{3}\right)^n+\sqrt{3}\left(13-\sqrt{3}\right)^n+13\left(13-\sqrt{3}\right)^n}{2\sqrt{3}}\)
\(=\dfrac{26\left[\left(13+\sqrt{3}\right)^n-\left(13-\sqrt{3}\right)^n\right]}{2\sqrt{3}}+\dfrac{-\left[\left(13+\sqrt{3}\right)^n\left(13-\sqrt{3}\right)\right]}{2\sqrt{3}}+\dfrac{\left[\left(13-\sqrt{3}\right)^n\left(13+\sqrt{3}\right)\right]}{2\sqrt{3}}\)
\(=26U_n-\dfrac{166\left[\left(13+\sqrt{3}\right)^{n-1}-\left(13-\sqrt{3}\right)^{n-1}\right]}{2\sqrt{3}}\)
\(=26U_n-166U_{n-1}\) --> đpcm
P/s: Dấu = thứ 3 từ trên xuống cái p/s đấy là cả 1 dòng nha, tại dài quá nên ph chia lm 2 lần viết :v Lóa mắt
Mk muốn làm giúp bạn lắm chứ nhưng mà khổ lỗi mk mới học lớp 6 . Xin lỗi bn
bài 2 gợi ý từ hdt (x+y+z)^3=x^3+y^3+z^3+3(x+y)(y+z)(z+x)
VT (ở đề bài) = a+b+c
<=>....<=>3[căn bậc 3(a)+căn bậc 3(b)].[căn bậc 3(b)+căn bậc 3(c)].[căn bậc 3(c)+căn bậc 3 (a)]=0
từ đây rút a=-b,b=-c,c=-a đến đây tự giải quyết đc r
Ta có: a3b−ab3=a3b−ab−ab3+ab=ab(a2−1)−ab(b2−1)
=b(a−1)a(a+1)−a(b−1)b(b+1)
Do tích của 3 số tự nhiên liên tiếp thì chia hết cho 6
=> b(a−1)a(a+1);a(b−1)b(b+1)⋮6⇒a3b−ab3⋮6⇒a3b−ab3⋮6
mk chưa đk hok đến dạng này , còn phần b chắc cx như phần a thôy , pjo mk có vc bận nên tối về mk sẽ lm típ nha
Sửa lại đề: cho x, y, z dương thỏa mãn \(\dfrac{1}{xy}+\dfrac{1}{xz}+\dfrac{1}{yz}=1\)
Chứng minh \(A=\dfrac{x}{\sqrt{yz\left(1+x^2\right)}}+\dfrac{y}{\sqrt{xz\left(1+y^2\right)}}+\dfrac{z}{\sqrt{xy\left(1+z^2\right)}}\le\dfrac{3}{2}\)
Giải:
Đặt \(a=\dfrac{1}{x};b=\dfrac{1}{y};c=\dfrac{1}{z}\Rightarrow ab+bc+ac=1\)
\(\Rightarrow A=\dfrac{\dfrac{1}{a}}{\sqrt{\dfrac{1}{bc}\left(1+\dfrac{1}{a^2}\right)}}+\dfrac{\dfrac{1}{b}}{\sqrt{\dfrac{1}{ac}\left(1+\dfrac{1}{b^2}\right)}}+\dfrac{\dfrac{1}{a}}{\sqrt{\dfrac{1}{ab}\left(1+\dfrac{1}{c^2}\right)}}\)
\(\Rightarrow A=\sqrt{\dfrac{bc}{a^2+1}}+\sqrt{\dfrac{ac}{b^2+1}}+\sqrt{\dfrac{ab}{c^2+1}}\)
\(\Rightarrow A=\sqrt{\dfrac{bc}{a^2+ab+bc+ac}}+\sqrt{\dfrac{ac}{b^2+ab+bc+ac}}+\sqrt{\dfrac{ab}{c^2+ab+bc+ac}}\)
\(\Rightarrow A=\sqrt{\dfrac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\dfrac{ac}{\left(a+b\right)\left(b+c\right)}}+\sqrt{\dfrac{ab}{\left(a+c\right)\left(b+c\right)}}\)
\(\Rightarrow A\le\dfrac{1}{2}\left(\dfrac{b}{a+b}+\dfrac{c}{a+c}+\dfrac{a}{a+b}+\dfrac{c}{b+c}+\dfrac{a}{a+c}+\dfrac{b}{b+c}\right)\)
\(\Rightarrow A\le\dfrac{1}{2}\left(\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{a+c}{a+c}\right)=\dfrac{3}{2}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{\sqrt{3}}{3}\) hay \(x=y=z=\sqrt{3}\)
Đề bài này có rất nhiều vấn đề, đầu tiên không có điều kiện x, y, z gì cả? Dương? Â? Bằng 0? Khác 0?
Sau nữa là chiều của BĐT cũng có vấn đề nốt, mình thử với \(x=y=2;z=\dfrac{4}{3}\) thì vế trái ra \(\dfrac{2+\sqrt{30}}{5}\) mà theo casio cho biết thì số này nhỏ hơn \(\dfrac{3}{2}\) , vậy BĐT cũng sai luôn
a) Ta có \(\frac{1}{n+k}>\frac{1}{2n}\)với k=1;2;...;n-1
=> \(\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{n+n}>\frac{1}{2n}+\frac{1}{2n}+\frac{1}{2n}+....+\frac{1}{2n}=\frac{n}{2n}=\frac{1}{2}\)
Mặt khác ta có \(\frac{1}{n+k}+\frac{1}{n\left(+\left(n+1-k\right)\right)}< \frac{3}{2n}\)
\(\Leftrightarrow3k^2+3nk+n+3k\forall k=1;2;...;n\)
Với k=1 ta có \(\frac{1}{n+1}+\frac{1}{n+n}< \frac{3}{2n}\)
Với k=2 ta có \(\frac{1}{n+2}+\frac{1}{n+\left(n-1\right)}< \frac{3}{2n}\)
..........................................
Với k=n ta có \(\frac{1}{n+n}+\frac{1}{n+1}< \frac{3}{2n}\)
Cộng từng vế của 2 BĐT trên ta được
\(2\left(\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{n+n}\right)< \frac{3}{2n}+\frac{3}{2n}+....+\frac{3}{2n}=\frac{3n}{2n}=\frac{3}{2}\)
\(\Rightarrow\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{n+n}< \frac{3}{4}\)(đpcm)
Không cần chứng minh \(\frac{1}{2}< \frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{n+n}\)