Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn đẳng thức \(\dfrac{d}{b}=\dfrac{c}{a}\) nhé bạn
sorry đăng nhầm,cái này mk hỏi có bn trả lời rồi
Á p dụng tính chất dãy tỉ số bằng nhau
\(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}\)
\(\Leftrightarrow\left(\dfrac{a}{c}\right)^2=\left(\dfrac{a-b}{c-d}\right)^2\Leftrightarrow\dfrac{a}{c}.\dfrac{b}{d}=\left(\dfrac{a-b}{c-d}\right)^2\)
suy ra đpcm
Biết \(\dfrac{a^2 + b^2}{c^2 + d^2}=\dfrac{ab}{cd}\) với a,b,c,d khác 0. Chứng minh rằng:
\(\dfrac{a}{b}=\dfrac{c}{d}\) hoặc\(\dfrac{a}{b}=\dfrac{d}{c}\) cái \(\dfrac{a}{b}=\dfrac{c}{d}\)thì mình chứng minh được rồi còn cái\(\dfrac{a}{b}=\dfrac{d}{c}\)thì chưa mong các bạn giúp ạ
Có \(\dfrac{a}{b}=\dfrac{c}{d}< =>ad=bc\)
Xét \(\dfrac{a+c}{b+d}-\dfrac{a-c}{b-d}\)
= \(\dfrac{\left(a+c\right)\left(b-d\right)-\left(b+d\right)\left(a-c\right)}{\left(b+d\right)\left(b-d\right)}\)
= \(\dfrac{ab-ad+bc-cd-ab+bc-da+cd}{\left(b+d\right)\left(b-d\right)}\)
= 0
<=> \(\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}\)
\(a\cdot b=c\cdot d\)
\(\Rightarrow\dfrac{a}{c}=\dfrac{d}{b}\)
\(\dfrac{a}{d}=\dfrac{c}{b}\)
Có hai đẳng thức : \(\dfrac{a}{c}=\dfrac{d}{b}\); \(\dfrac{a}{d}=\dfrac{c}{b}\)