K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2019

a)\(\overrightarrow{AC}=\left(4;0\right)\Rightarrow\overrightarrow{N}_{AC}=\left(0;4\right)\)

Phương trình đường thẳng AC : \(4y-4=0\)

Phương trình đường thẳng BH vuông góc AC : \(4x+c=0\)

Thay tọa độ điểm B được : \(c=-4\)

Phương trình đường thẳng BH :\(4x-4=0\)

7 tháng 5 2019

b) \(\overrightarrow{AB}=\left(0;3\right)\)

Gọi M,N lần lượt là trung điểm AB,AC

\(M\left(1;\frac{5}{2}\right)\)

\(N\left(3;1\right)\)

Phương trình đường thẳng đi qua M vuông góc AB hay là đường trung trực AB: \(3y-\frac{15}{2}=0\)

\(\overrightarrow{AC}=\left(4;0\right)\)

Phương trình đường trung trực AC : \(4x-12=0\)

Tâm I đường tròn ngoại tiếp tam giác là nghiệm của hệ:

\(\left\{{}\begin{matrix}3y-\frac{15}{2}=0\\4x-12=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=\frac{5}{2}\end{matrix}\right.\)

\(\overrightarrow{IA}=\left(-2;-\frac{3}{2}\right)\)

\(IA=R\)

\(IA=\sqrt{\left(-2\right)^2+\left(\frac{-3}{2}\right)^2=\frac{5}{2}}\)

Phương trình đường tròn ngoại tiếp tam giác ABC: \(\left(x-3\right)^2+\left(y-\frac{5}{2}\right)^2=\frac{25}{4}\)

a: BC/sinA=2R

=>2R=3/sin40

=>\(R\simeq2,33\left(cm\right)\)

b: góc B=180-40-60=80 độ 

\(\dfrac{AC}{sinB}=\dfrac{BC}{sinA}=\dfrac{AB}{sinC}\)

=>AC/sin80=3/sin40=AB/sin60

=>\(AC\simeq5\left(cm\right)\) và \(AB\simeq4,04\left(cm\right)\)

c: \(AM=\sqrt{\dfrac{AB^2+AC^2}{2}-\dfrac{BC^2}{4}}=\sqrt{\dfrac{5^2+4,04^2}{2}-\dfrac{3^2}{4}}\simeq4,29\left(cm\right)\)

NV
23 tháng 4 2020

Gọi phương trình đường thẳng có dạng \(y=-2x+b\)

Do d qua M nên:

\(5=-2.1+b\Rightarrow b=7\)

Phương trình đường thẳng: \(y=-2x+7\Leftrightarrow2x+y-7=0\)

AB+BC<AC

nên ko có tam giác ABC thỏa mãn nha bạn

NV
19 tháng 3 2022

\(\overrightarrow{AB}=\left(1;1\right)\Rightarrow AB=\sqrt{2}\)

\(\Rightarrow d\left(C;AB\right)=h_a=\dfrac{2S_{ABC}}{AB}=\dfrac{3\sqrt{2}}{2}\)

Gọi M là trung điểm AB, K là chân đường vuông góc hạ từ G xuống AB \(\Rightarrow GK||CH\) (cùng vuông góc AB)

Áp dụng định lý Talet: \(\dfrac{GK}{CH}=\dfrac{GM}{CM}=\dfrac{1}{3}\) (t/c trọng tâm)

\(\Rightarrow\dfrac{d\left(G;AB\right)}{d\left(C;AB\right)}=\dfrac{1}{3}\Rightarrow d\left(G;AB\right)=\dfrac{1}{3}d\left(C;AB\right)=\dfrac{\sqrt{2}}{2}\)

Do G thuộc \(3x-y-8=0\Rightarrow\) tọa độ G có dạng \(G\left(a;3a-8\right)\)

Phương trình AB: \(1\left(x-2\right)-1\left(y+3\right)=0\Leftrightarrow x-y-5=0\)

\(d\left(G;AB\right)=\dfrac{\left|a-\left(3a-8\right)-5\right|}{\sqrt{1^2+\left(-1\right)^2}}=\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow\left|2a-3\right|=1\Rightarrow\left[{}\begin{matrix}a=2\Rightarrow G\left(2;-2\right)\\a=1\Rightarrow G\left(1;-5\right)\end{matrix}\right.\)

Áp dụng công thức trọng tâm: \(\left\{{}\begin{matrix}x_C=3x_G-x_A-x_B\\y_C=3y_G-y_A-y_B\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}C\left(1;-1\right)\\C\left(-2;-10\right)\end{matrix}\right.\)

Đường cao CH đi qua C và vuông góc AB nên nhận \(\left(1;1\right)\) là vtpt

Có 2 đường thỏa mãn: \(\left[{}\begin{matrix}1\left(x-1\right)+1\left(y+1\right)=0\\1\left(x+2\right)+1\left(y+10\right)=0\end{matrix}\right.\) \(\Leftrightarrow...\)

1 tháng 5 2020

9/ \(\Delta//\left(d\right)\Rightarrow\overrightarrow{n_d}=\left(1;-2\right)\)

\(\Rightarrow\left(d\right):\left(x-1\right)-2\left(y+1\right)=0\)

\(\left(d\right):x-2y-3=0\)

10/ \(\overrightarrow{BC}=\left(-6;8\right)\)

PT đường cao AA' nhận vecto BC làm vtpt

\(\Rightarrow\overrightarrow{n_{AA'}}=\overrightarrow{u_{BC}}=\left(-6;8\right)\)

\(AA':-6\left(x-1\right)+8\left(y+2\right)=0\)

\(AA'=-6x+8y+22=0\)

18/ Trong quá trình làm bài, mình rút ra kết luận sau: Nếu một đường thẳng chắn 2 trục toạ độ 2 đoạn có độ dài bằng nhau thì ptđt có hệ số góc là \(k=\pm1\)

Để mình chứng minh lại:

Đường thẳng có dạng : y= ax+b

\(\Rightarrow\) Nó cắt trục Oy tại điểm có toạ độ là \(\left(0;b\right)\)

Và cắt trục Ox tại điểm có toạ độ là \(\left(-\frac{b}{a};0\right)\)

Vì khoảng cách từ O đến từng điểm là như nhau

\(\Rightarrow\left|b\right|=\left|\frac{b}{a}\right|\Leftrightarrow\left[{}\begin{matrix}b=\frac{b}{a}\\b=-\frac{b}{a}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=1\\a=-1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\overrightarrow{u}=\left(1;1\right)\\\overrightarrow{u}=\left(1;-1\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left(d\right):x-2+y+3=0\\\left(d\right):x-2-y-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left(d\right):x+y+1=0\\\left(d\right):x-y-5=0\end{matrix}\right.\)

NV
22 tháng 5 2020

\(\overrightarrow{CA}=\left(5;-3\right)\)

\(BH\perp CA\) nên nhận \(\left(5;-3\right)\) là 1 vtpt

Phương trình BH:

\(5\left(x-4\right)-3\left(y-5\right)=0\Leftrightarrow5x-3y-5=0\)

a: vecto BC=(2;-5)

=>VTPT là (5;2)

Phương trình (d) là:

5(x+1)+2(y-2)=0

=>5x+5+2y-4=0

=>5x+2y+1=0

b: Gọi (C): x^2+y^2-2ax-2by+c=0

Theo đề, ta có:

\(\left\{{}\begin{matrix}\left(-1\right)^2+2^2+2a-4b+c=0\\1^2+1^2-2a-2b+c=0\\9+16-6a+8b+c=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2a-4b+c=-1-4=-5\\-2a-2b+c=-2\\-6a+8b+c=-25\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{19}{8}\\b=-\dfrac{13}{4}\\c=-\dfrac{53}{4}\end{matrix}\right.\)

=>(C): x^2+y^2+19/4x+13/2y-53/4=0

=>x^2+2*x*19/8+361/64+y^2+2*y*13/4+169/16=1885/64

=>(x+19/8)^2+(y+13/4)^2=1885/64