K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2021

Gấp hộ mình nhé :)

 

1 tháng 4 2021

tự vẽ hình 

a, có AM/AB=1/3

mà AN/AC=1,5/4,5=1/3

=> AM/AB=AN/AC

=> MN//BC

b, Ta có MN//BC=> tam giác AMN đồng dạng tam giác ABC

=> <AMN= <ABC

Xét tam giác AMI và tam giác ABK

<AMI= <ABC (cmt)

<MAK chung

=> tam giác AMI đồng dạng tam giác ABK

MI/BK= AI/AK 

 

29 tháng 2 2020

:V chụp xong không gửi được cái phần kia nên mình chép ra vậy hình bạn tự vẽ nhé v

a) Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A ta được:

\(AB^2+AC^2=BC^2\)

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)

Xét tam giác ABC có MN//BC (gt)

\(\Rightarrow\frac{AM}{AB}=\frac{AN}{AC}=\frac{MN}{BC}\)( hệ quả của định lý Ta-let)

\(\Rightarrow\frac{3}{4}=\frac{AN}{8}=\frac{MN}{10}\)

\(\Rightarrow\hept{\begin{cases}AN=6\left(cm\right)\\MN=7,5\left(cm\right)\end{cases}}\)

b)Vì MI//AC (gt)

\(\Rightarrow MI//AK\left(K\in AB\right)\)

Vì IK//AB(gt)

\(\Rightarrow IK//AM\left(M\in AB\right)\)

Ta có: \(\hept{\begin{cases}MI//AK\left(cmt\right)\\IK//AM\left(cmt\right)\end{cases}\Rightarrow MI=AK}\)( tc cặp đoạn chắn)

Ta có: AM+MB=AB

\(\Rightarrow MB=1,5\left(cm\right)\)

Xét tam giác ABC có MI//AB(gt)

29 tháng 2 2020

Cho biểu thức B=\(\frac{2x+1}{x^2-1}\); A= \(\frac{3x+1}{x^2-1}\)--\(\frac{x}{x-1}\)+\(\frac{x-1}{x+1}\) (x khác +,- 1; x khác \(\frac{-1}{2}\))

a) Tính giá trị của B biết x=-2

b) Rút gọn A

c) Cho P=A:B Tìm x biết P=3

Cho biểu thức A=\(\left(\frac{2x-3}{x^2-9}-\frac{2}{x+3}\right):\frac{x}{x+3}\)(x khác +,- 3)

a) Rút gọn A

b) TÍnh giá trị của A khi x=\(-\frac{1}{2}\)

c) Tìm các giá trị nguyên của x để A nhận giá trị nguyên

Bài 1: 

Xét ΔBMC có 

N là trung điểm của BM

I là trung điểm của BC

Do đó: NI là đường trung bình của ΔBMC

Suy ra: NI//MK

Xét ΔANI có 

M là trung điểm của AN

MK//NI

Do đó: K là trung điểm của AI

5 tháng 10 2021

em cảm ơn ạ

23 tháng 8 2019

a) AC = 10cm Þ SABC =37,5 (cm2)

b) Chứng minh được M A E ^ = A M E ^  (cùng = A B C ^ ) Þ AE = ME. Cmtt ta có AE = NE. Từ đó suy ra ME = NE.

c) Chứng minh EH//GF (//MB) và GE//FH (//NC) Þ EGFH là hình bình hành. Chứng minh được H E G ^ = B A C ^ = 90 0 ⇒ E G F H là hình chữ nhật. Suy ra GH đi qua trung điểm của EF.

S E G F H = H E . E G = 1 2 M B . 1 2 N C = 1 4 . 2 3 A B . 2 3 A C = 25 3 ( c m 2 )  

Mà S E G F H = 4. S ⇒ I H F S I H F = 25 12 c m 2

22 tháng 9 2021

mik cam on