K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2022

Tham khảo

https://hoidap247.com/cau-hoi/1976291

5 tháng 2 2022

Bạn cm cho mik phần AG.AK=2BN.BI=2\(BO^2\)ở trang đấy ạ :-;

góc BEC=1/2*180=90 độ

góc BDC=1/2*180=90 độ

Xét ΔABC có

BD,CE là đường cao

DB cắt CE tại H

=>H là trực tâm

=>AH vuông góc BC tại F

góc MDO=góc MDH+góc ODH

=góc MHD+góc DBC

=góc HBF+góc FHB=90 độ

=>DM là tiếp tuyến của (O)

22 tháng 10 2023

1: Xét tứ giác AEDB có

\(\widehat{AEB}=\widehat{ADB}=90^0\)

=>AEDB là tứ giác nội tiếp đường tròn đường kính AB

Tâm I là trung điểm của AB

Bán kính là \(IA=\dfrac{AB}{2}\)

2: Xét ΔDBH vuông tại D và ΔDAC vuông tại D có

\(\widehat{DBH}=\widehat{DAC}\left(=90^0-\widehat{ACB}\right)\)

Do đó: ΔDBH đồng dạng với ΔDAC

=>DB/DA=DH/DC

=>\(DB\cdot DC=DA\cdot DH\)

3: ABDE là tứ giác nội tiếp

=>\(\widehat{ADE}=\widehat{ABE}=\widehat{ABN}\)

Xét (O) có

\(\widehat{ABN}\) là góc nội tiếp chắn cung AN

\(\widehat{AMN}\) là góc nội tiếp chắn cung AN

Do đó: \(\widehat{ABN}=\widehat{AMN}\)

=>\(\widehat{HDE}=\widehat{HMN}\)

mà hai góc này là hai góc ở vị trí đồng vị

nên DE//MN

1: góc ADC=góc AEC=90 độ

=>ADEC nội tiếp

2: góc ABH=90 độ-góc BAC=góc DEA

a: Xét tứ giác AEHD có

\(\widehat{AEH}+\widehat{ADH}=90^0+90^0=180^0\)

=>AEHD là tứ giác nội tiếp

Xét tứ giác BEDC có \(\widehat{BEC}=\widehat{BDC}=90^0\)

nên BEDC là tứ giác nội tiếp

b: Xét (O) có

\(\widehat{D'E'C}\) là góc nội tiếp chắn cung D'C

\(\widehat{D'BC}\) là góc nội tiếp chắn cung D'C

Do đó: \(\widehat{D'E'C}=\widehat{D'BC}\left(1\right)\)

Ta có: BEDC là tứ giác nội tiếp

=>\(\widehat{DEC}=\widehat{DBC}\)

=>\(\widehat{HED}=\widehat{D'BC}\left(2\right)\)

Từ (1),(2) suy ra \(\widehat{HED}=\widehat{HE'D'}\)

mà hai góc này là hai góc ở vị trí đồng vị

nên DE//D'E'

Kẻ tiếp tuyến Ax của (O')

=>Ax\(\perp\)OA tại A

Xét (O) có

\(\widehat{xAB}\) là góc tạo bởi tiếp tuyến Ax và dây cung AB

\(\widehat{ACB}\) là góc nội tiếp chắn cung AB

Do đó: \(\widehat{xAB}=\widehat{ACB}\)

mà \(\widehat{ACB}=\widehat{AED}\left(=180^0-\widehat{BED}\right)\)

nên \(\widehat{xAB}=\widehat{AED}\)

mà hai góc này là hai góc ở vị trí so le trong

nên Ax//ED

Ta có: Ax//ED

OA\(\perp\)Ax

Do đó: OA\(\perp\)ED

c: Xét (O) có

ΔABA' nội tiếp

A'A là đường kính

Do đó: ΔABA' vuông tại B

=>AB\(\perp\)BA'

Xét (O) có

ΔACA' nội tiếp

A'A là đường kính

Do đó: ΔACA' vuông tại C

=>AC\(\perp\)CA'

Ta có: AC\(\perp\)CA'

BH\(\perp\)AC

Do đó:  BH//A'C

Ta có: AB\(\perp\)BA'

CH\(\perp\)AB

Do đó: CH//BA'

Xét tứ giác BHCA' có

BH//CA'

BA'//CH

Do đó: BHCA' là hình bình hành

=>BC cắt HA' tại trung điểm của mỗi đường

mà I là trung điểm của BC

nên I là trung điểm của HA'

=>H,I,A' thẳng hàng