K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2021

\(f\left(x\right)=ax^2+bx+2020\\ \Leftrightarrow f\left(\sqrt{3}-1\right)=a\left(4-2\sqrt{3}\right)+b\left(\sqrt{3}-1\right)+2020=2021\\ \Leftrightarrow4a-2a\sqrt{3}+b\sqrt{3}-b-1=0\\ \Leftrightarrow\left(4a-b-1\right)-\sqrt{3}\left(2a-b\right)=0\\ \Leftrightarrow4a-b-1=\sqrt{3}\left(2a-b\right)\)

Vì a,b hữu tỉ nên \(4a-b-1;2a-b\) hữu tỉ

Mà \(\sqrt{3}\) vô tỉ nên \(\sqrt{3}\left(2a-b\right)\) hữu tỉ khi \(2a-b=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}4a-b-1=0\\2a-b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=1\end{matrix}\right.\)

\(\Leftrightarrow f\left(1+\sqrt{3}\right)=\dfrac{1}{2}\left(4+2\sqrt{3}\right)+1+\sqrt{3}+2020=2023+2\sqrt{3}\)

17 tháng 4 2022

Mình có nghĩ ra cách này mọi người xem giúp mình với

f(x) = \(ax^2+bx+c\) 

Ta có f(0) = 2 => c = 2

Ta đặt Q(x) = \(ax^2+bx+c-2020\)

và G(x) = \(ax^2+bx+c+2021\)

f(x) - 2020 chia cho x - 1 hay Q(x) chia cho x - 1 được số dư

\(R_1\) = Q(1) = \(a.1^2+b.1+c-2020=a+b+c-2020\)  

Mà Q(x) chia hết cho x-1 nên \(R_1\) = 0

hay \(a+b+c-2020=0\). Mà c = 2 => a + b = 2018 (1)

G(x) chia cho x + 1 số dư 

\(R_2\) = G(-1) = \(a.\left(-1\right)^2+b.\left(-1\right)+c+2021=a-b+2+2021\)

Mà G(x) chia hết cho x + 1 nên \(R_2\)=0

hay \(a-b+2+2021=0\) => \(a-b=-2023\) (2)

Từ (1) và (2) suy ra: \(\left\{{}\begin{matrix}a+b=2018\\a-b=-2023\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}a=-\dfrac{5}{2}\\b=\dfrac{4041}{2}\end{matrix}\right.\)

17 tháng 4 2022

ko biết !!!

NV
27 tháng 4 2020

\(f\left(2k-1\right)=\left[\left(2k-1\right)^2+2k-1+1\right]^2+1\)

\(=\left(4k^2+1-2k\right)^2+1=\left(4k^2+1\right)^2-4k\left(4k^2+1\right)+4k^2+1\)

\(=\left(4k^2+1\right)\left(4k^2-4k+2\right)=\left(4k^2+1\right)\left[\left(2k-1\right)^2+1\right]\)

\(f\left(2k\right)=\left(4k^2+1+2k\right)^2+1=\left(4k^2+1\right)^2+4k\left(4k^2+1\right)+4k^2+1\)

\(=\left(4k^2+1\right)\left(4k^2+4k+2\right)=\left(4k^2+1\right)\left[\left(2k+1\right)^2+1\right]\)

\(\Rightarrow\frac{f\left(2k-1\right)}{f\left(2k\right)}=\frac{\left(4k^2+1\right)\left[\left(2k-1\right)^2+1\right]}{\left(4k^2+1\right)\left[\left(2k+1\right)^2+1\right]}=\frac{\left(2k-1\right)^2+1}{\left(2k+1\right)^2+1}\)

\(\Rightarrow\frac{f\left(1\right).f\left(3\right).f\left(5\right)...f\left(2k-1\right)}{f\left(2\right).f\left(4\right).f\left(6\right)...f\left(2k\right)}=\frac{2}{10}.\frac{10}{16}.\frac{16}{50}...\frac{\left(2k-3\right)^2+1}{\left(2k-1\right)^2+1}.\frac{\left(2k-1\right)^2+1}{\left(2k+1\right)^2+1}=\frac{2}{\left(2k+1\right)^2+1}\)

\(\Rightarrow\frac{f\left(1\right)f\left(3\right)...f\left(2017\right)}{f\left(2\right)f\left(4\right)...f\left(2018\right)}=\frac{2}{2019^2+1}=\frac{1}{2038181}\)

NV
25 tháng 3 2022

Xét \(f\left[f\left(x\right)+x\right]=\left[f\left(x\right)+x\right]^2+m\left[f\left(x\right)+x\right]+n\)

\(=\left(x^2+mx+n+x\right)^2+m\left(x^2+mx+n+x\right)+n\)

\(=\left(x^2+mx+n\right)^2+2x\left(x^2+mx+n\right)+x^2+m\left(x^2+mx+n\right)+mx+n\)

\(=\left(x^2+mx+n\right)^2+2x\left(x^2+mx+n\right)+m\left(x^2+mx+n\right)+\left(x^2+mx+n\right)\)

\(=\left(x^2+mx+n\right)\left(x^2+mx+n+2x+m+1\right)\)

\(=\left(x^2+mx+n\right)\left[\left(x+1\right)^2+m\left(x+1\right)+n\right]\)

\(=f\left(x\right).f\left(x+1\right)\)

Thay \(x=2021\)

\(\Rightarrow f\left[f\left(2021\right)+2021\right]=f\left(2021\right).f\left(2022\right)\)

Đặt \(f\left(2021\right)+2021=k\)

Do \(f\left(x\right)\) có hệ số m;n nguyên \(\Rightarrow k\) nguyên

\(\Rightarrow f\left(k\right)=f\left(2021\right).f\left(2022\right)\) với k nguyên 

Hay tồn tại số nguyên k thỏa mãn yêu cầu