K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2020
Cmr nếu x,y là các số nguyên thì P nhận giá trị khác 33 . Mk ghi thiếu ạ!
7 tháng 1 2018

VT sẽ được phân tích thành 

\(\left(y-x\right)\left(y+x\right)\left(2y-x\right)\left(2y+x\right)\left(3y+x\right)=33\)

Nếu x,y là các số nguyên =>VT là tích của 5 số nguyên, mà 33 chỉ là tích của nhiều nhất là 4 số nguyên => vô lí=> PT k có nghiệm nguyên 

^_^

7 tháng 1 2018

thanks chị nhiều ^_^

28 tháng 7 2018

1.

\(\frac{25x^4y^3-15x^3y^5+20x^2y^4}{5x^2y^3}\)

\(=\frac{5x^2y^3\left(5x^2-3xy^2+4y\right)}{5x^2y^3}\)

\(=5x^2-3xy^2+4y\)

2.

a)  \(27x^4-8x=x\left(27x^3-8\right)\)

\(=x\left(3x-2\right)\left(9x^2+6x+4\right)\)

b)  \(16x^2y-4xy^2-4x^3+x^2y\)

\(=4xy\left(4x-y\right)-x^2\left(4x-y\right)\)

\(=x\left(4x-y\right)\left(4y-x\right)\)

c) \(x^2-2x-5+2\sqrt{5}\)

\(=\left(x-1\right)^2-6+2\sqrt{5}\)

\(=\left(x-1\right)^2-\left(6-2\sqrt{5}\right)=\left(x-1\right)^2-\left(\sqrt{5}-1\right)^2\)

\(=\left(x-\sqrt{5}\right)\left(x-2+\sqrt{5}\right)\)

28 tháng 7 2018

Bài 1:

 \(\left(25x^4y^3-15x^3y^5+20x^2y^4\right):\left(5x^2y^3\right)\)

\(=\frac{25x^4y^3-15x^3y^5+20x^2y^4}{5x^2y^3}\)

\(=\frac{5x^2y^3\left(5x^2-3xy^2+4y\right)}{5x^2y^3}\)

\(=5x^2-3xy^2+4y\)

Bài 2: 

a) \(27x^4-8x\)

\(=x\left(3x-2\right)\left(3^2x^2+2.3x+2^2\right)\)

\(=x\left(3x-2\right)\left(9x^2+6x+4\right)\)

b) \(16x^2y-4xy^2-4x^3+x^2y\)

\(=4y^2+x^2-\left(4x^2\right)^2\)

\(=x\left(-4x^2+xy+4y^2\right)\)

a) Ta có: \(4x^2-6x\)

\(=2x\left(2x-3\right)\)

b) Ta có: \(9x^4y^3+3x^2y^4\)

\(=3x^2y^3\left(3x^2+y\right)\)

c) Ta có: 3(x-y)-5x(y-x)

=3(x-y)+5x(x-y)

=(x-y)(3+5x)

d) Ta có: \(x^3-2x^2+5x\)

\(=x\left(x^2-2x+5\right)\)

e) Ta có: \(5\left(x+3y\right)-15x\left(x+3y\right)\)

\(=\left(x+3y\right)\left(5-15x\right)\)

\(=5\left(x+3y\right)\cdot\left(1-3x\right)\)

f) Ta có: \(2x^2\left(x+1\right)+4\left(x+1\right)\)

\(=\left(x+1\right)\left(2x^2+4\right)\)

\(=2\left(x+1\right)\left(x^2+2\right)\)

a, 25-x2+4xy-4y2 

= 25-(x2-4xy+4y2

= 52-(x-2y)2 

= (5-x+2y)(5+x-2y)   

Các biểu thức sau bạn tự chứng minh nhé

14 tháng 10 2020

6) \(9x^3y^2+3x^2y^2=3x^2y^2\left(3x+1\right)\)

7) \(x^3+2x^2+3x=x\left(x^2+2x+3\right)\)

8) \(6x^2y+4xy^2+2xy=2xy\left(3x+2y+1\right)\)

9) \(5x^2\left(x-2y\right)-15x\left(x-2y\right)=5x\left(x-2y\right)\left(x-3\right)\)

10) \(3\left(x-y\right)-5x\left(y-x\right)=\left(x-y\right)\left(3+5x\right)\)

14 tháng 10 2020

6) 9x3y2 + 3x2y2 = 3x2y2( 3x + 1 )

7) x3 + 2x2 + 3x = x( x2 + 2x + 3 )

8) 6x2y + 4xy2 + 2xy = 2xy( 3x + 2y + 1 )

9) 5x2( x - 2y ) - 15x( x - 2y ) = 5x( x - 2y )( x - 3 )

10 3( x - y ) - 5x( y - x ) = 3( x - y ) + 5x( x - y ) = ( x - y )( 3 + 5x )

20 tháng 10 2023

a) Xem lại đề

b) x³ - 4x²y + 4xy² - 9x

= x(x² - 4xy + 4y² - 9)

= x[(x² - 4xy + 4y² - 3²]

= x[(x - 2y)² - 3²]

= x(x - 2y - 3)(x - 2y + 3)

c) x³ - y³ + x - y

= (x³ - y³) + (x - y)

= (x - y)(x² + xy + y²) + (x - y)

= (x - y)(x² + xy + y² + 1)

d) 4x² - 4xy + 2x - y + y²

= (4x² - 4xy + y²) + (2x - y)

= (2x - y)² + (2x - y)

= (2x - y)(2x - y + 1)

e) 9x² - 3x + 2y - 4y²

= (9x² - 4y²) - (3x - 2y)

= (3x - 2y)(3x + 2y) - (3x - 2y)

= (3x - 2y)(3x + 2y - 1)

f) 3x² - 6xy + 3y² - 5x + 5y

= (3x² - 6xy + 3y²) - (5x - 5y)

= 3(x² - 2xy + y²) - 5(x - y)

= 3(x - y)² - 5(x - y)

= (x - y)[(3(x - y) - 5]

= (x - y)(3x - 3y - 5)