K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
24 tháng 7 2021

Đa thức \(P\left(x\right)=x^3-3x+1\)có ba nghiệm phân biệt \(x_1,x_2,x_3\) có: 

\(\hept{\begin{cases}x_1+x_2+x_3=0\\x_1x_2+x_2x_3+x_3x_1=-3\\x_1x_2x_3=-1\end{cases}}\)

\(E=Q\left(x_1\right)Q\left(x_2\right)Q\left(x_3\right)=\left(x_1^2-1\right)\left(x_2^2-1\right)\left(x_3^2-1\right)\)

\(=\left(x_1x_2x_3\right)^2-\left(x_1^2x_2^2+x_2^2x_3^2+x_3^2x_1^2\right)+\left(x_1^2+x_2^2+x_3^2\right)-1\)

\(=\left(x_1x_2x_3\right)^2-\left[\left(x_1x_2+x_2x_3+x_3x_1\right)^2-2x_1x_2x_3\left(x_1+x_2+x_3\right)\right]+\left[\left(x_1+x_2+x_3\right)^2-2\left(x_1x_2+x_2x_3+x_3x_1\right)\right]-1\)

\(=\left(-1\right)^2-3^2+2.3-1=-3\)

6 tháng 12 2020

\(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)

\(\Leftrightarrow2+\frac{x+4}{2000}+\frac{x+3}{2001}=2+\frac{x+2}{2002}+\frac{x+1}{2003}\)

\(\Leftrightarrow\left(\frac{x+4}{2000}+1\right)+\left(\frac{x+3}{2001}+1\right)=\left(\frac{x+2}{2002}+1\right)+\left(\frac{x+1}{2001}+1\right)\)

\(\Leftrightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)

\(\Leftrightarrow\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)

Mà \(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\ne0\)

Suy ra x+2004=0

\(\Leftrightarrow x=-2004\)

1. Cho đa thức f(x)ϵZ[x]f(x)ϵZ[x]f(x)=ax4+bx3+cx2+dx+ef(x)=ax4+bx3+cx2+dx+e với a, b, c, d, e là các số lẻ.Cm đa thức không có nghiệm hữu tỉ2. Cho P(x) có bậc 3; P(x)ϵZ[x]P(x)ϵZ[x] và P(x) chia hết cho 7 với mọi x ϵZϵZCmR các hệ số của P(x) chia hết cho 7.3. Cho đa thức P(x) bậc 4 có hệ số cao nhất là 1 thỏa mãn P(1)=10; P(2)=20; P(3)=30.Tính P(12)+P(−8)10P(12)+P(−8)104. Tìm đa thức P(x)...
Đọc tiếp

1. Cho đa thức f(x)ϵZ[x]f(x)ϵZ[x]
f(x)=ax4+bx3+cx2+dx+ef(x)=ax4+bx3+cx2+dx+e với a, b, c, d, e là các số lẻ.
Cm đa thức không có nghiệm hữu tỉ
2. Cho P(x) có bậc 3; P(x)ϵZ[x]P(x)ϵZ[x] và P(x) chia hết cho 7 với mọi x ϵZϵZ
CmR các hệ số của P(x) chia hết cho 7.
3. Cho đa thức P(x) bậc 4 có hệ số cao nhất là 1 thỏa mãn P(1)=10; P(2)=20; P(3)=30.
Tính P(12)+P(−8)10P(12)+P(−8)10
4. Tìm đa thức P(x) dạng x5+x4−9x3+ax2+bx+cx5+x4−9x3+ax2+bx+c biết P(x) chia hết cho (x-2)(x+2)(x+3)
5. Tìm đa thức bậc 3 có hệ số cao nhất là 1 sao cho P(1)=1; P(2)=2; P(3)=3
6. Cho đa thức P(x) có bậc 6 có P(x)=P(-1); P(2)=P(-2); P(3)=P(-3). CmR: P(x)=P(-x) với mọi x
7. Cho đa thức P(x)=−x5+x2+1P(x)=−x5+x2+1 có 5 nghiệm. Đặt Q(x)=x2−2.Q(x)=x2−2.
Tính A=Q(x1).Q(x2).Q(x3).Q(x4).Q(x5)A=Q(x1).Q(x2).Q(x3).Q(x4).Q(x5) (x1,x2,x3,x4,x5x1,x2,x3,x4,x5 là các nghiệm của P(x))

1
5 tháng 4 2020

Vì P(x) có hệ số bậc cao nhất là 1

Nên P(x) có thể được viết dưới dạng: \(P\left(x\right)=\left(x-x_1\right)\left(x-x_2\right)\left(x-x_3\right)\left(x-x_4\right)\left(x-x_5\right)\)

Và \(P\left(-1\right)=\left(-1\right)^5-5\left(-1\right)^3+4\left(-1\right)+1=1\)

\(P\left(\frac{1}{2}\right)=\frac{77}{32}\)

Ta có: \(Q\left(x\right)=2x^2+x-1=2x^2+2x-x-1=2x\left(x+1\right)-\left(x+1\right)=\left(x+1\right)\left(2x-1\right)\)

=> \(Q\left(x_1\right).\text{​​}\text{​​}Q\left(x_2\right).\text{​​}\text{​​}Q\left(x_3\right).\text{​​}\text{​​}Q\left(x_4\right).\text{​​}\text{​​}Q\left(x_5\right)\text{​​}\text{​​}\)

\(=\left(x_1+1\right)\left(2x_1-1\right)\left(x_2+1\right)\left(2x_2-1\right)\left(x_3+1\right)\left(2x_3-1\right)\left(x_4+1\right)\left(2x_4-1\right)\left(x_5+1\right)\left(2x_5-1\right)\)

\(=32\left(-1-x_1\right)\left(\frac{1}{2}-x_1\right)\left(-1-x_2\right)\left(\frac{1}{2}-x_2\right)\left(-1-x_3\right)\left(\frac{1}{2}-x_3\right)\left(-1-x_4\right)\left(\frac{1}{2}-x_4\right)\left(-1-x_5\right)\left(\frac{1}{2}-x_5\right)\)\(=32.P\left(-1\right).P\left(\frac{1}{2}\right)=32.1.\frac{77}{32}=77\)

7 tháng 4 2020

\(p\left(x\right)=x^5-5x^3+4x+1=\left(x-x_1\right)\left(x-x_2\right)\left(x-x_3\right)\left(x-x_4\right)\left(x-x_5\right)\)

\(Q\left(x\right)=2\left(\frac{1}{2}-x\right)\left(-1-x\right)\)

Do đó \(Q\left(x_1\right)\cdot Q\left(x_2\right)\cdot Q\left(x_3\right)\cdot Q\left(x_4\right)\cdot Q\left(x_5\right)\)

\(=2^5\left[\left(\frac{1}{2}-x_1\right)\left(\frac{1}{2}-x_2\right)\left(\frac{1}{2}-x_3\right)\left(\frac{1}{2}-x_4\right)\left(\frac{1}{2}-x_5\right)\right]\)

\(=\left(-1-x_1\right)\left(-1-x_2\right)\left(-1-x_3\right)\left(-1-x_4\right)\left(-1-x_5\right)\)

\(=32P\left(\frac{1}{2}\right)\cdot\left[P\left(-1\right)\right]\)

\(=32\cdot\left(\frac{1}{32}-\frac{5}{8}+\frac{4}{2}+1\right)\left(-1+5-4+1\right)\)

\(=4300\)

*Mình không chắc*

DD
8 tháng 8 2021

Ta có hằng đẳng thức: 

\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

Ta thấy \(\left(x-1\right)+\left(x-2\right)+\left(3-2x\right)=0\)

do đó \(\left(x-1\right)^3+\left(x-2\right)^3+\left(3-2x\right)^3=3\left(x-1\right)\left(x-2\right)\left(3-2x\right)\)

suy ra \(\left(x-1\right)\left(x-2\right)\left(3-2x\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x_1=1\\x_2=2\\x_3=\frac{3}{2}\end{cases}}\)

\(S=\frac{29}{4}\).

Ta có:

\(P\left(x\right)=2x\left(x^3-3x+1\right)-\left(x^3-3x+1\right)+x^2-4\)

Do đó: \(P\left(a\right).P\left(b\right).P\left(c\right)=\left(a^2-4\right)\left(b^2-4\right)\left(c^2-4\right)\)

Ta có:

\(\left(x-a\right)\left(x-b\right)\left(x-c\right)=x^3-3x+1\)

\(\Rightarrow\left\{{}\begin{matrix}a+b+c=0\\ab+ac+bc=-3\\abc=-1\end{matrix}\right.\)

C1: \(\left(a^2-4\right)\left(b^2-4\right)\left(c^2-4\right)=\left(abc\right)^2-4\left(a^2b^2+b^2c^2+c^2a^2\right)+16\left(a^2+b^2+c^2\right)-4^3\)

\(=1-4.9+16.6-4^3=-3\)\(\Rightarrow P\left(a\right).P\left(b\right).P\left(c\right)=-3\)

C2: Biến đổi thêm một chút

Ta có: \(a,b,c\ne0\) nên 

 \(a^3-3a+1=0\Leftrightarrow a\left(a^2-3\right)+1=0\)\(\Rightarrow a^2-3=\dfrac{-1}{a}\)

Tương tự...

 \(\Rightarrow P\left(a\right).P\left(b\right).P\left(c\right)=\left(-\dfrac{1}{a}-1\right)\left(-\dfrac{1}{b}-1\right)\left(-\dfrac{1}{c}-1\right)\)

\(=-\left(\dfrac{1}{a}+1\right)\left(\dfrac{1}{b}+1\right)\left(\dfrac{1}{c}+1\right)\)\(=-\dfrac{a+1}{a}.\dfrac{b+1}{b}.\dfrac{c+1}{c}=abc+ac+bc+ab+a+b+c+1=-1-3+1=-3\)

1 tháng 6 2019

a) Rút gọn P = x 4 y ; thay x = 10 và y = − 1 10  và biểu thức ta được P = 10 4 . − 1 10 = − 10 3 .  

b) Nhận xét: Ta thấy biểu thức Q không thể rút gọn và việc thay trực tiếp x = 31 vào biểu thức khiến tính toán phức tạp. Với x = 31 thì 30 = 31 – 1 = x – 1.

Do đó Q =  x 3   –   ( x   –   1 ) x 2   –   x 2   +   1

Rút gọn Q = 1.

3 tháng 3 2019

Alo đề nghị viết đề một cách chính xác 

6 tháng 1 2018

Đáp án cần chọn là: A