K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2018

ta có: 2a + b  = 0

\(\Rightarrow2a=-b\Rightarrow a=\frac{-b}{2}\)

ta có: \(P_{\left(-1\right)}=a.\left(-1\right)^2+b.\left(-1\right)+c\)

\(P_{\left(-1\right)}=a-b+c\)

thay số: \(P_{\left(-1\right)}=\frac{-b}{2}-b+c\)

\(P_{\left(-1\right)}=\frac{-b}{2}-\frac{2b}{2}+c=\frac{-b-2b}{2}+c\)

\(P_{\left(-1\right)}=\frac{-3b}{2}+c\)

ta có: \(P_{\left(3\right)}=a.3^2+b.3+c\)

\(P_{\left(3\right)}=a9+3b+c\)

thay số: \(P_{\left(3\right)}=\frac{-b}{2}.9+3b+c\)

\(P_{\left(3\right)}=\frac{-9b}{2}+\frac{6b}{2}+c\)

\(P_{\left(3\right)}=\frac{-9b+6b}{2}+c\)

\(P_{\left(3\right)}=\frac{-3b}{2}+c\)

\(\Rightarrow P_{\left(-1\right)}.P_{\left(3\right)}=\left(\frac{-3b}{2}+c\right).\left(\frac{-3b}{2}+c\right)\)

\(P_{\left(-1\right)}.P_{\left(3\right)}=\left(\frac{-3b}{2}+c\right)^2\ge0\)

\(\Rightarrow P_{\left(-1\right)}.P_{\left(3\right)}\ge0\left(đpcm\right)\)

28 tháng 5 2018

Ta có : 

\(P\left(x\right)=ax^2+bx+c\)

\(\Rightarrow\hept{\begin{cases}P\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c\\P\left(3\right)=a.3^2+b.3+c\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}P\left(-1\right)=a-b+c\\P\left(3\right)=9a+3b+c\end{cases}}\)

\(\Rightarrow P\left(3\right)-P\left(-1\right)=\left(9a+3b+c\right)-\left(a-b+c\right)\)

\(\Rightarrow P\left(3\right)-P\left(-1\right)=9a+3b+c-a+b-c\)

\(\Rightarrow P\left(3\right)-P\left(-1\right)=8a+4b\)

\(\Rightarrow P\left(3\right)-P\left(-1\right)=4\left(2a+b\right)\)

Mà \(2a+b=0\Rightarrow4\left(2a+b\right)=0\Rightarrow P\left(3\right)-P\left(-1\right)=0\Rightarrow P\left(3\right)=P\left(-1\right)\)

Nên : 

\(P\left(3\right).P\left(-1\right)=P\left(-1\right).P\left(-1\right)=\left[P\left(-1\right)\right]^2\ge0\)

\(\Rightarrow P\left(3\right).P\left(-1\right)\ge0\left(Đpcm\right)\)

P/s : Đúng nha 

10 tháng 7 2018

P/s : Easy mà bạn :

Ta có : 

\(P\left(x\right)=ax^2+bx+c\)

\(\Rightarrow\hept{\begin{cases}P\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c\\P\left(3\right)=a.3^2+b.3+c\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}P\left(-1\right)=a-b+c\\P\left(3\right)=9a+3b+c\end{cases}}\)

\(\Rightarrow P\left(3\right)-P\left(-1\right)=9a+3b+c-\left(a-b+c\right)\)

\(\Rightarrow P\left(3\right)-P\left(-1\right)=8a+4b\)

\(\Rightarrow P\left(3\right)-P\left(-1\right)=4\left(2a+b\right)\)

\(\Rightarrow P\left(3\right)-P\left(-1\right)=4.0=0\)

\(\Rightarrow P\left(3\right)=P\left(-1\right)\)

\(\Rightarrow\)

\(P\left(3\right).P\left(-1\right)=P\left(3\right).P\left(3\right)=\left[P\left(3\right)\right]^2\ge0\)

\(\left(Đcpm\right)\)

21 tháng 2 2022

\(a=1,b=6,c=1\)

\(5a-b+c=5-6+1=0\)

\(P\left(1\right).P\left(3\right)=\left(1.1^2+6.1+1\right).\left(1.3^2+6.3+1\right)>0?\)

28 tháng 6 2017

Ta có P(-1) = a - b + c

P(3) = 9a + 3b +c

=> P(3) - P(-1) = (9a + 3b + c) - ( a - b + c) = 8a + 4b

Mà 2a + b = 0 (GT) => 8a + 4b = 0 => P(3) - P(-1) = 0

=> P(3) = P(-1) => P(3). P(-1) = (P(3))^2 lớn hơn hoặc = 0 (đpcm)

25 tháng 3 2018

?

29 tháng 8 2018

Ta có:

\(P\left(-1\right)=a\left(-1\right)^2+b\left(-1\right)+c\)

\(\Rightarrow P\left(-1\right)=a-b+c\)

\(P\left(3\right)=a.3^2+b.3+c\)

\(\Rightarrow P\left(3\right)=9a+3b+c\)

\(\Rightarrow P\left(3\right)-P\left(-1\right)=9a+3b+c-a+b-c\)

\(\Rightarrow P\left(3\right)-P\left(-1\right)=8a+4b\)

\(\Rightarrow P\left(3\right)-P\left(-1\right)=4\left(2a+b\right)\)

\(\Rightarrow P\left(3\right)-P\left(-1\right)=0\)

\(\Rightarrow P\left(3\right)=P\left(-1\right)\)

\(\Rightarrow P\left(-1\right).P\left(3\right)=P\left(3\right)^2\)

\(P\left(3\right)^2\ge0\)

\(\Rightarrow P\left(-1\right).P\left(3\right)\ge0\)

7 tháng 5 2021

$\rm x=1\\\to ax^2+bx+c=a+b+c=0\\\to x=1\,\là \,\,no \,\pt$

7 tháng 5 2021

`x=-1=>ax^2+bx+c=a-b+c=0`

2 tháng 2 2022

Cho `x=0`

`=> f(0) = a.0^2 + b.0 + c`

`=> f(0) = c`

Mà tại `x=0` thì `f(x)` là số nguyên do đó `c` là số nguyên

Cho `x=1`

`=> f(1) = a.1^2 + b.1+c`

`=> f(1)= a+b+c`  (1) 

Mà tại `x=1` thì `f(x)` là số nguyên do đó a+b+c là số nguyên, mặt khác c là số nguyên nên `a+b` là số nguyên

Cho `x= -1`

`=> f(-1) = a.(-1)^2 + b.(-1)+c`

`=> f(-1) = a -b+c` (2)

Từ `(1)` và `(2)`

`=>f(1) + f(-1) =  a+b+c + a-b+c`

`= 2a + 2c` là số nguyên do `f(1)` và `f(-1)` là những số nguyên

Mà `c` là số nguyên nên `2c` là số nguyên

`=> 2a` là số nguyên

Vậy `2a ; a+b ,c` là những số nguyên

NV
30 tháng 3 2021

\(P\left(2\right)=4a+2b+c=2\left(5a+b+2c\right)-6a-3c=-6a-3c\)

\(P\left(-1\right)=a-b+c=-\left(5a+b+2c\right)+6a+3c\)

\(\Rightarrow P\left(2\right).P\left(-1\right)=\left(-6a-3c\right)\left(6a+3c\right)=-\left(6a+3c\right)^2\le0\) (đpcm)

29 tháng 1 2023

hehe

AH
Akai Haruma
Giáo viên
29 tháng 4 2018

Lời giải:

Ta có:

\(P(x)=ax^2+bx+c\)

\(\Rightarrow \left\{\begin{matrix} P(-1)=a-b+c\\ P(3)=9a+3b+c\end{matrix}\right.\)

Suy ra: \(P(3)-P(-1)=9a+3b+c-(a-b+c)\)

\(=8a+4b=4(2a+b)=0\)

\(\Rightarrow P(3)=P(-1)\)

\(\Rightarrow P(-1)P(3)=[P(3)]^2\geq 0\)

Ta có đpcm.

2 tháng 5 2018

2a+b=0=>b=-2a

p(x)=ax^2 -2ax+c

p(-1)=a(-1)^2-2a(-1)+c=3a+c

p(3)=9a-6a+c=3a+c

p(-1).p(3)=(3a+c)^2 >=0=>dpcm

28 tháng 5 2018

mk thấy đề bài của bn sai rồi 

14 tháng 6 2021

2a+b=0 ⇒ b=-2a

P(-1)=a(-1)2+(-2a).(-1)+c

        =a+2a+c

        =3a+c

P(3)=a.32+(-2a).3+c

       =9a-6a+c

       =3a+c

P(-1).P(3)

=(3a+c).(3a+c)

=(3a+c)2

Vì (3a+c)2≥0

⇒P(-1).P(3)≥0