Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK : \(\left(x;y\ne0\right)\)
P = axy3 - 3x2y + 2y2 - 3xy3 + 1
= (axy3 - 3xy3) - 3x2y + 2y2 + 1
= xy3(a - 3) - 3x2y + 2y2 + 1
Vì -3x2y có bậc 3 ; 2y2 có bậc 2 ; 1 có bậc 0 <=>
=> xy3(a - 3) có bậc 4 khi a \(\ne\) 3
mà a là số nguyên tố nhỏ hơn 5
=> \(a\in\left\{2;3\right\}\)
mà a \(\ne\) 3 => a = 2
Vậy a = 2
A(x) = ax4 - 2x3 + 3x2 - 2x4 - 7x + 1
A(x) = (ax4 - 2x4) - 2x3 + 3x2 - 2x4 - 7x + 1
A(x) = (a-2)x4 - 2x3 + 3x2 - 2x4 - 7x + 1
Vì đa thức trên có bậc là 4 nên a - 2 # 0 ⇒ a # 2
Vì a là số nguyên tố nhỏ hơn 5 nên a = 2; a =3
a = 2 (loại)
Vậy a = 3
Kết luận a = 3
ax^2y-2xy^2 + 3xy -2x^3y -7x+11(*)
=ax^2y -2xy^2 + xy(3-2x^2) -7x+1
Để đa thức có bậc 4 thì 3> 2x^2 hoặc 3< 2x^2
=> x< hoặc =1 hoặc x> hoặc =2
từ (*) ta phân tích thêm được:
x^2y(a-2x) -2x-2xy^2 + 3x3xy -7x+11
=> a> 2x hoặc a< 2x
Giả sử a=2 => x< 1 hoặc x>1( loại)
Giả sử a=3 => x< hơn hoặc=1 hoặc x> hơn hoặc=2 (thỏa mãn)
Vậy a=3
a: \(H=6x^3y^4-2x^4y^2+3x^2y^2+5x^4y^2-A\cdot x^3y^4\)
\(=x^3y^4\left(6-A\right)+x^4y^2\left(5-2\right)+3x^2y^2\)
\(=\left(6-A\right)\cdot x^3y^4+x^4y^2\cdot3+3x^2y^2\)
Để H có bậc là 6 thì 6-A=0
=>A=6
b: Khi A=6 thì \(H=\left(6-6\right)\cdot x^3y^4+3x^4y^2+3x^2y^2\)
\(=3x^4y^2+3x^2y^2\)
\(=3x^2y^2\left(x^2+1\right)\)
\(x^2+1>1>0\forall x\ne0\)
\(x^2>0\forall x\ne0\)
\(y^2>0\forall y\ne0\)
Do đó: \(x^2y^2\left(x^2+1\right)>0\forall x,y\ne0\)
=>\(H=3x^2y^2\left(x^2+1\right)>0\forall x,y\ne0\)
=>H luôn dương khi x,y khác 0