Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)phân tích đa thức ra nhân tử
M = (a2+b2-c2)2 - 4a2b2 =(a2+b2-c2)2 - (2ab)2 = [ (a2+b2-c2) - 2ab] . [ (a2+b2-c2) + 2ab]
= [(a-b)2-c2] .[(a+b)2-c2] = (a-b-c)(a-b+c)(a+b-c)(a+b+c)
b)chứng minh nếu a,b,c là số đo các cạnh của tam giác thì M<0
M = (a-b-c)(a-b+c)(a+b-c)(a+b+c)
ta biết trong 1 tam giác tổng 2 cạnh luôn lớn hơn cạnh còn lại. Nếu a,b,c là số đo các cạnh của tam giác
ta luôn có: a+b+c > 0; a+b-c>0 ; a-b+c> 0; a-b-c = a -(b+c) <0
Vậy tích M = (a-b-c)(a-b+c)(a+b-c)(a+b+c) <0
M = ( a2 + b2 - c2 )2 - 4a2b2
= ( a2 + b2 - c2 )2 - ( 2ab )2 = (a2 + b2 - c2 + 2ab )( a2 + b2 - c2 - 2ab )
= [( a + b )2 - c2 ] . [( a - b )2 -c2 ]
= ( a + b + c )( a+ b - c )( a - b + c )( a - b -c )
a: \(A=\left(b^2+c^2-a^2\right)^2-4b^2c^2\)
\(=\left(b^2+c^2-a^2\right)^2-\left(2bc\right)^2\)
\(=\left(b^2-2bc+c^2-a^2\right)\left(b^2+2bc+c^2-a^2\right)\)
\(=\left[\left(b+c\right)^2-a^2\right]\left[\left(b-c\right)^2-a^2\right]\)
\(=\left(b+c-a\right)\left(b+c+a\right)\left(b-c-a\right)\left(b-c+a\right)\)
b: a,b,c là độ dài 3 cạnh của 1 tam giác
=>b+c>a và a+b>c và a+c>b
=>b+c-a>0 và a+b-c>0 và a+c-b>0
=>b+c-a>0 và b-(c+a)<0 và a+b-c>0
=>(b+c-a)[b-(c+a)][a+b-c](a+b+c)<0
=>A<0
Đề đúng: \(M=\left(a^2+b^2-c^2\right)^2-4a^2b^2\)
a) Ta có:
\(M=\left(a^2+b^2-c^2\right)^2-4a^2b^2\)
\(M=\left(a^2+b^2-c^2-2ab\right)\left(a^2+b^2-c^2+2ab\right)\)
\(M=\left[\left(a^2-2ab+b^2\right)-c^2\right]\left[\left(a^2+2ab+b^2\right)-c^2\right]\)
\(M=\left[\left(a-b\right)^2-c^2\right]\left[\left(a+b\right)^2-c^2\right]\)
\(M=\left(a-b-c\right)\left(a-b+c\right)\left(a+b-c\right)\left(a+b+c\right)\)
b) Nếu a,b,c là độ dài 3 cạnh của tam giác thì:
\(\hept{\begin{cases}a+b>c\\c+a>b\\b+c>a\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b-c>0\\a-b+c>0\\a-b-c< 0\end{cases}}\) , mà a + b + c > 0
=> \(M< 0\)
4a2b2-(a2+b2-c2)2
= (4ab-a2-b2+c2)(4ab+a2+b2-c2)
= -[(a-b)2-c2][(a+b)2-c2]
=-(a-b+c)(a-b-c)(a+b-c)(a+b+c)
=(b-a-c)(b+c-a)(a+b-c)(a+b+c)
\(4a^2b^2-\left(a^2+b^2-c^2\right)^2\)
\(=\left(2ab\right)^2-\left(a^2+b^2-c^2\right)^2\)
\(=\left(2ab-a^2-b^2+c^2\right)\left(2ab+a^2+b^2-c^2\right)\)
Bài 1.
Đặt \(A=1.2.3+2.3.4+3.4.5+...+2013.2014.2015\)
\(4A=1.2.3.\left(4-0\right)+2.3.4.\left(5-1\right)+3.4.5.\left(6-2\right)+...+2013.2014.2015.\left(2016-2012\right)\)
\(=1.2.3.4-0.1.2.3+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+...+2013.2014.2015.2016-2012.2013.2014.2015\)
\(=2013.2014.2015.2016\)
Bài 2.
a) \(M=\left(a^2+b^2-c^2\right)^2-4a^2b^2\)
\(=\left(a^2+b^2-c^2\right)^2-\left(2ab\right)^2\)
\(=\left(a^2+b^2-c^2-2ab\right)\left(a^2+b^2-c^2+2ab\right)\)
\(=\left[\left(a-b\right)^2-c^2\right]\left[\left(a+b\right)^2-c^2\right]\)
\(=\left(a-b-c\right)\left(a+b-c\right)\)
b) Ta có: a, b, c là số đo các cạnh của tam giác
\(\Leftrightarrow\left\{{}\begin{matrix}a+b>c\\b+c>a\\c+a>b\end{matrix}\right.\) (*)
mà \(M=\left(a-b-c\right)\left(a+b-c\right)=\left[a-\left(b+c\right)\right]\left(a+b-c\right)\)
Kết hợp với (*) \(\Rightarrow M< 0\) (đpcm)