Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B-2x^2y^3z^2+\frac{2}{3}y^4-\frac{1}{5}x^4y^3=A\)
\(\Rightarrow B=A+2x^2y^3-\frac{2}{3}y^4+\frac{1}{5}x^4y^3\)
\(\Rightarrow B=-4x^5y^3+x^4y^3\cdot3x^2y^3z^2+4x^5y^3+x^2y^3z^2-2y^4+2x^2y^3z^2-\frac{2}{3}y^4+\frac{1}{5}x^4y^3\)
\(=\left(-4x^5y^3+4x^5y^3\right)+\left(x^2y^3z^2+2x^2y^3z^2\right)+x^4y^3\cdot3x^2y^3z^2-\left(2y^4+\frac{2}{3}y^4\right)-\frac{1}{5}x^4y^3\)
\(=3x^2y^3z^2+x^4y^3\cdot3x^2y^3z^2-\frac{8}{6}y^4-\frac{1}{5}x^4y^3\)
\(B=-2xy^2+\frac{1}{3}x^3y-x-\frac{1}{3}x^3y+xy^2+x-4x^2y\)
a) \(B=\left(-2+1\right)xy^2+\left(\frac{1}{3}-\frac{1}{3}\right)x^3y+\left(x-x\right)-4x^2y\)
\(B=-xy^2+x^3y+\left(-4\right)x^2y\)
\(B=-xy^2+x^3y-4x^2y\)
b) -xy2 có bậc là 3
x3y có bậc là 4
-4x2y có bậc là 3
=> Bậc của B = 4
c) x = 1 ; y = 2
Thay x = 1 ; y = 2 vào B ta có :
\(B=-xy^2+x^3y-4x^2y\)
\(B=-\left(1\cdot2^2\right)+1^3\cdot2-4\cdot1^2\cdot2\)
\(B=-4+2-8\)
\(B=-10\)
Vậy giá trị của B = -10 khi x = 1 ; y = 2
a, \(B=-2xy^2+\frac{1}{3}x^3y-x-\frac{1}{3}x^3y+xy^2+x-4x^2y\)
\(=-2xy^2+\frac{x^3y}{3}-x-\frac{x^3y}{3}+xy^2+x-4x^2y\)
\(=-xy^2-4x^2y\)
b,
Bậc của -xy2 = 3
Bậc của x3y = 4
Bậc của -4x2y = 3
Bậc của B = 4
c, Thay x = 1 ; y = 2 vào đon thức trên ta đc
\(-\left(1.2^2\right)-4.1^2.2=-4-4.1.2=-4-8=-12\)
câu 1
a)\(\left|x-2\right|+4=6\Leftrightarrow\left|x-2\right|=2\Leftrightarrow\orbr{\begin{cases}x-2=2\\x-2=-2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=4\\x=0\end{cases}}}\)
b) \(B=x^2y^3-3xy+4\)
khi x = -1 và y = 2
\(\Leftrightarrow B=\left(-1\right)^2.2^3-3.\left(-1\right).\left(2\right)+4\)
\(\Leftrightarrow B=1.8-\left(-6\right)+4\)
\(\Leftrightarrow B=14+4=18\)
c) nhân phần biến với biến hệ với hệ thì ra thôi
Câu 1 a) |x - 2| + 4 = 6
=> |x - 2| = 2
=> \(\orbr{\begin{cases}x-2=2\\x-2=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=4\\x=0\end{cases}}\)
Vậy x \(\in\left\{4;0\right\}\)
b) Thay x = -1 ; y = 2 vào B ta có :
B = (-1)2.23 - 3.(-1).2 + 4
= 8 + 6 + 4 = 18
c) \(A=\frac{1}{3}x^2y^3.\left(-6x^3y^2\right)^2=\frac{1}{3}x^2y^3.36x^6y^4=12x^8y^7\)
Hệ số : 12
Bậc của đơn thức : 15
Phần biến x8y7
2) a) f(x) - g(x) = (2x3 - x2 + 5) - (-2x3 + x2 + 2x - 1)
= 2x3 - x2 + 5 + 2x3 - x2 - 2x + 1)
= 4x3 - 2x2 + 2x + 6
Bậc của f(x) - g(x) là 3
b) f(x) + g(x) = (2x3 - x2 + 5) + (-2x3 + x2 + 2x - 1)
= 2x3 - x2 + 5 - 2x3 + x2 + 2x - 1
= 2x + 4
Lại có f(x) + g(x) = 0
=> 2x + 4 = 0
=> 2x = -4
=> x = -2
Vậy x = -2
a) \(M\left(x\right)=2x-\frac{1}{2}=0\Leftrightarrow2x=0+\frac{1}{2}=\frac{1}{2}\Leftrightarrow x=\frac{1}{2}\div2=\frac{1}{4}\)
Vậy nghiệm của M( x ) là \(\frac{1}{4}\)
b) \(N\left(x\right)=\left(x+5\right)\left(4x^2-1\right)=0\) Chia 2 TH
TH1 : \(x+5=0\Leftrightarrow x=0-5=-5\)
TH2 : \(4x^2-1=0\Leftrightarrow4x^2=1\Leftrightarrow x^2=\frac{1}{4}\Leftrightarrow x=\frac{1}{2}\)
Vậy N( x ) có 2 nghiệm là \(x=-5;x=\frac{1}{2}\)
c) \(P\left(x\right)=9x^3-25x=0\Leftrightarrow x\left(9x^2-25\right)=0\) Chia 2 TH
TH1 : \(x=0\). TH2 : \(9x^2-25=0\Leftrightarrow9x^2=0+25=25\)
\(\Rightarrow x^2=\frac{25}{9}\Rightarrow x=\frac{5}{3}\). Vậy P( x ) có 2 nghiệm là \(x=0;x=\frac{5}{3}\)
2a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\) => \(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{6}=2\\\frac{z}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.10=20\\y=2.6=12\\z=2.21=42\end{cases}}\)
Vậy x,y,z lần lượt là 20; 12; 42
#)Giải :
Bài 2 :
d) Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
\(\Rightarrow x=2k;y=3k;z=5k\)
\(\Rightarrow2k.3k.5k=810\)
\(\Rightarrow30k^3=810\)
\(\Rightarrow k^3=3\)
\(\Rightarrow k=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=3\\\frac{y}{3}=3\\\frac{z}{5}=3\end{cases}\Rightarrow\hept{\begin{cases}x=6\\x=9\\x=15\end{cases}}}\)
Vậy x = 6; y = 9; z = 15
\(\left(2x^2y+x^2y^2-3xy^2+5\right)-M=2x^3y-5xy^2+4\)
\(M=\left(2x^2y+x^2y^2-3xy^2+5\right)-\left(2x^3y-5xy^2+4\right)\)
\(=2x^2+x^2y^2+2xy^2-2x^3y+1\)
Thay vào,ta có:
\(M=2\cdot\left(-\frac{1}{2}\right)^2+\left(-\frac{1}{2}\right)^2\cdot\left(-\frac{1}{2}\right)^2-2\cdot\left(-\frac{1}{2}\right)^3\cdot\left(-\frac{1}{2}\right)+1\)
\(=\frac{1}{2}+\frac{1}{16}-\frac{1}{8}+1\)
tự tính nốt:3
a) M=\(2xy^2+x^2y^2-3xy^2+5\) - \(2x^3y-5xy^2+4\)
=\(\left(2xy^2-3xy^2-5xy^2\right)\)+ \(x^2y^2\)+ ( 5+4 ) \(-2x^3y\)=\(-6xy^2\)+ \(x^2y^2\)+9 - \(2x^3y\)
bậc của đa thức là: 4
b) tại x=\(\frac{-1}{2}\); y=\(\frac{-1}{2}\)ta có:
M=\(-6xy^2+x^2y^2+9-2x^3y\)=\(-6.\left(\frac{-1}{2}\right)\left(\frac{-1}{2}\right)^2\)+ \(\left(\frac{-1}{2}\right)^2\left(\frac{-1}{2}\right)^2\)+ 9 - \(2\left(\frac{-1}{2}\right)^3\left(\frac{-1}{2}\right)\)
=\(3.\frac{1}{4}\)+ \(\frac{1}{8}\)+ 9 - \(\frac{1}{8}\)=\(\frac{3}{4}\)+ \(\frac{1}{8}\)+ 9 - \(\frac{1}{8}\)=\(\frac{3}{4}+9\)=\(\frac{3}{4}+\frac{36}{4}\)=\(\frac{39}{4}\)
vậy tại \(x=\frac{-1}{2}\); \(y=\frac{-1}{2}\)thì M=\(\frac{39}{4}\)