Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng công thức: (m – n). ( m+ n) = m2 – n2 => m2 – n2 chia hết (m – n)
Ta có : f(x)=ax2- bx + c
=> Tính chất: f (m) – f(n) chia hết ( m – n)
Ta có:
f(104) – f(9) chia hết 105
=> f(104) – f(9) chia hết 5
=> f(104) chia hết 5
Mặt khác:
f(104) – f(5) chia hết 99
=> f(104) – f(5) chia hết 9
=> f(104) chia hết 9
Vậy f(104) chia hết (5.9) = 45
Ta có:
\(f\left(5\right)=125a+25b+5c+d\)
\(f\left(4\right)=64a+16b+4c+d\)
\(f\left(7\right)=343a+49b+7c+d\)
\(f\left(2\right)=8a+4b+2c+d\)
Xét:
\(f\left(5\right)-f\left(4\right)=125a+25b+5c+d-64a-16b-4c-d\)
\(=61a+9b+c=2019\)
Khi đó:
\(f\left(7\right)-f\left(2\right)=343a+49b+7c+d-8a-4b-2c-d\)
\(=335a+45b+5c=5\left(61a+9b+c\right)+30=5\cdot2019+30⋮5\)
Vậy ta có đpcm
Áp dụng công thức: (m – n). ( m+ n) = m2 – n2 => m2 – n2 chia hết (m – n)
Ta có : f(x)=ax2- bx + c
=> Tính chất: f (m) – f(n) chia hết ( m – n)
Ta có:
f(104) – f(9) chia hết 105
=> f(104) – f(9) chia hết 5
=> f(104) chia hết 5
Mặt khác:
f(104) – f(5) chia hết 99
=> f(104) – f(5) chia hết 9
=> f(104) chia hết 9
Vậy f(104) chia hết (5.9) = 45
Lời giải:
Ta có:
\(f(5)-f(4)=2012\)
\(\Leftrightarrow (a.5^3+b.5^2+c.5+d)-(a.4^3+b.4^2+c.4+d)=2012\)
\(\Leftrightarrow 61a+9b+c=2012\)
Do đó:
\(f(7)-f(2)=(a.7^3+b.7^2+c.7+d)-(a.2^3+b.2^2+c.2+d)\)
\(=335a+45b+5c=30a+5(61a+9b+c)\)
\(=30a+5.2012=5(6a+2012)\vdots 5\)
Mà \(f(7)-f(2)=30a+5.2012>5, \forall a\in\mathbb{Z}^+\). Do đó $f(7)-f(2)$ là hợp số (đpcm)
a) f(0) = c; f(0) nguyên => c nguyên (*)
f(1) = a+ b + c ; f(1) nguyên => a+ b + c nguyên (**)
f(2) = 4a + 2b + c ; f(2) nguyên => 4a + 2b + c nguyên (***)
Từ (*)(**)(***) => a + b và 4a + 2b nguyên
4a + 2b = 2a + 2.(a + b) có giá trị nguyên mà 2(a+ b) nguyên do a+ b nguyên
nên 2a nguyên => 4a có giá trị nguyên mà 4a + 2b nguyên do đó 2b có giá trị nguyên
b) f(3) = 9a + 3b + c = (a+ b + c) + (4a + 2b) + 4a
Vì a+ b + c ; 4a + 2b; 4a đều có giá trị nguyên nên f(3) có giá trị nguyên
f(4) = 16a + 4b + c = (a+ b) + (9a + 3b + c) + 3. 2a
Vì a+ b; 9a + 3b + c; 2a đều nguyên nên f(4) có giá trị nguyên
f(5) = 25a + 5b + c = (16a + 4b + c) + (a+ b) + 4. 2a
Vì 16a + 4b + c ; a+ b; 2a đều có giá trị nguyên nên f(5) có giá trị nguyên
\(f\left(5\right)-f\left(4\right)=\left(125a+25b+5c+d\right)-\left(64a+16b+4c+d\right)=61a+9b+c=2019\)
\(f\left(7\right)-f\left(2\right)=\left(343a+49b+7c+d\right)-\left(8a+4b+2c+d\right)=335a+45b+5c=5.\left(61a+9b+c\right)+30a=2019+30a⋮3\)
\(\Rightarrowđpcm\)