Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A(x)=(a-2b)x^2-3bx+a-1
Theo đề, ta có: A(x) chia hết cho x-4 và A(1)=0
=>a-2b-3b+a-1=0
=>2a-5b-1=0
=>5b=2a-1
=>b=0,4a-0,2
A(x)=(a-2b)x^2-3bx+a-1
=(a-0,8a+0,4)x^2-3x(0,4a-0,2)+a-1
=(0,2a+0,4)x^2-(1,2a-0,6)x+a-1
A(x) chia hết cho x-4
=>(0,2a+0,4)x^2-x(0,8a+1,6)+x(0,8a+1,6-1,2a+0,6)+a-1 chia hết cho x-4
=>x(-0,4a+2,2)+a-1 chia hết cho x-4
=>x(-0,4a+2,2)-4(-0,4a+2,2)+4(-0,4a+2,2)+a-1 chia hết cho x-4
=>-1,6a+8,8+a-1=0
=>-0,6a+7,8=0
=>a=13
=>b=0,4*13-0,2=5,2-0,2=5
\(f\left(1+\sqrt{2}\right)=2019\Rightarrow a\left(1+\sqrt{2}\right)^2+b\left(1+\sqrt{2}\right)+2018=2019\)
\(\Leftrightarrow a\left(3+2\sqrt{2}\right)+b\left(1+\sqrt{2}\right)=1\)
\(\Leftrightarrow3a+2a\sqrt{2}+b+b\sqrt{2}=1\)
\(\Leftrightarrow\left(2a+b\right)\sqrt{2}=1-3a-b\)
Do vế phải là số hữu tỉ nên vế trái hữu tỉ, mà \(\sqrt{2}\) vô tỉ nên vế phải hữu tỉ khi và chỉ khi \(2a+b=0\)
\(\Rightarrow\left\{{}\begin{matrix}2a+b=0\\1-3a-b=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2a+b=0\\3a+b=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=-2\end{matrix}\right.\)
Câu a :
Theo giả thiết bài ra ta có hệ phương trình :
\(\left\{{}\begin{matrix}P\left(1\right)=1^4+a.1^3+b.1^2+c.1+d=1\\P\left(2\right)=2^4+a.2^3+b.2^2+c.2+d=4\\P\left(3\right)=3^4+a.3^3+b.3^2+c.3+d=7\\P\left(4\right)=4^4+a.4^3+b.4^2+c.4+d=10\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b+c+d=0\\8a+4b+2c+d=-12\\27a+9b+3c+d=-74\\64a+16b+4c+d=-246\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}-7a-3b-c=12\\-26a-8b-2c=74\\-63a-15b-3c=246\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=-10\\b=35\\c=-47\\d=0-\left(-10+35-47\right)=22\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}a=-10\\b=35\\c=-47\\d=22\end{matrix}\right.\)
Biến đổi về dạng \(\left(x-\sqrt{2}\right)^3=2\)
\(\Leftrightarrow x^3-3x^2\cdot\sqrt{2}+6x-2\sqrt{2}=2\)
\(\Leftrightarrow x^3+6x-2=\left(3x^2+2\right)\cdot\sqrt{2}\)
\(\Leftrightarrow\left(x^3+6x-2\right)^2=2\left(3x^2+2\right)^2\)Rút gọn ta được \(x^6-6x^4-4x^3+12x^2-24x-4=0\)
Vậy đa thức cần tìm là \(x^6-6x^4-4x^3+12x^2-24x-4\)
thay x=-5/4 vào=>f(-5/4)=0
chia x-2 dư 39 =>f(2)=39
đc hệ pt bậc nhất 2 ẩn => tìm đc a và b