Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(x^2+2x+2=x^2+2x+1+1=\left(x+1\right)^2+1\ge1>0\forall x\)
a: \(f\left(1\right)=a+b+c+d=a+3a+c+c+d=4a+2c+d\)
\(f\left(-2\right)=-8a+4b-2c+d\)
\(=-8a+4\left(3a+c\right)-2c+d\)
\(=-8a+12a+4c-2c+d\)
\(=4a+2c+d\)
=>f(1)=f(-2)
b: Đặt \(h\left(x\right)=0\)
=>(x-1)(x-4)=0
=>x=1 hoặc x=4
Đặt g(x)=0
\(\Leftrightarrow x^2+5x+1=0\)
\(\text{Δ}=5^2-4\cdot1\cdot1=21>0\)
Do đó PT có 2 nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-5-\sqrt{21}}{2}\\x_2=\dfrac{-5+\sqrt{21}}{2}\end{matrix}\right.\)
=>h(x) và g(x) khôg có nghiệm chung
Mệnh đề đảo là “Nếu f(x) có một nghiệm bằng 1 thì a + b + c = 0”.
“Điều kiện cần và đủ f(x) = a x 2 + bx + c có một nghiệm bằng 1 là a + b + c = 0”.
Với \(c=0\Rightarrow f\left(x\right)=0\) có nghiệm \(x=0\) (loại)
TH1: \(a;c\) trái dấu
Xét pt \(f\left(x\right)=0\Leftrightarrow a\left(ax^2+bx+c\right)^2+b\left(ax^2+bx+c\right)+c=0\)
Đặt \(ax^2+bx+c=t\) \(\Rightarrow at^2+bt+c=0\) (1)
Do a; c trái dấu \(\Leftrightarrow\) (1) luôn có 2 nghiệm trái dấu.
Không mất tính tổng quát, giả sử \(t_1< 0< t_2\)
\(\Rightarrow\left[{}\begin{matrix}ax^2+bx+c=t_1\\ax^2+bx+c=t_2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}ax^2+bx+c-t_1=0\left(2\right)\\ax^2+bx+c-t_2=0\left(3\right)\end{matrix}\right.\)
Mà a; c trái dấu nên:
- Nếu \(a>0\Rightarrow c< 0\Rightarrow c-t_2< 0\Rightarrow a\left(c-t_2\right)< 0\)
\(\Rightarrow\) (3) có nghiệm hay \(f\left(x\right)=0\) có nghiệm (loại)
- Nếu \(a< 0\Rightarrow c>0\Rightarrow c-t_1>0\Rightarrow a\left(c-t_1\right)< 0\)
\(\Rightarrow\left(2\right)\) có nghiệm hay \(f\left(x\right)=0\) có nghiệm (loại)
Vậy đa thức \(f\left(x\right)\) luôn có nghiệm khi a; c trái dấu
\(\Rightarrow\)Để \(f\left(x\right)=0\) vô nghiệm thì điều kiện cần là \(a;c\) cùng dấu \(\Leftrightarrow ac>0\)
Khi đó xét \(g\left(x\right)=0\) có \(a.\left(-c\right)< 0\Rightarrow g\left(x\right)=0\) luôn có 2 nghiệm trái dấu (đpcm)
f(x) = (2m-2)x+m-3=0
Nếu 2m-2=0 => m=1 => f(x)= 0+1-3=0 (vô lí)
=> m=1 (nhận)
Nếu 2m-2\(\ne\)0 => m\(\ne\) 1
f(x) có no x= 3-m/2m-2
=> m\(\ne\)1 (loại)
Vậy m=1 thì f(x) vô nghiệm
Với x=0 ta có:
0=-4.f(0)
=>f(0)=0
=>0 là 1 nghiệm của f(x)(1)
Với x=4 ta có:
4.f(4-2)=0
<=>4.f(2)=0
<=>f(2)=0
=>2 là 1 nghiệm của f(x)(2)
Từ 1 và 2 =>f(x) luôn có 2 nghiệm là 0 và 2 hay f(x) có ít nhất 2 nghiệm